Finite Elements

Topics covered in the Finite Element Analysis and Applications:

    • Variational Boundary Value Problems in 1-D
      • Model problem
        • Longitudinal Deformation of a bar
        • Steady State Heat conduction in a bar
      • Strong and weak formulation
      • Functional space
      • Equivalence of weak and strong form

       

    • Galerkin Finite Element Method in 1-D
      • Finite element discretization
      • Trial and test function
      • Discrete weak form
      • Numerical integration
      • Stiffness matrix
      • External load work
      • Higher order finite elements
      • Error measure and convergence

       

    • Galerkin Finite Element Method in 2-D (Heat Conduction)
      • Notations
        • Gradient
        • Divergence
      • Conservation of Energy
      • Weak form
      • Finite elements
        • Trial and test functions
        • Weak form discretization
        • Linear triangular elements
        • Bilinear quadrilateral elements
        • Pascal’s triangle
        • Higher order triangular and quadrilateral elements

       

    • Continuum Finite Elements
      • Linearized theory of elasticity
        • Cauchy’s law
        • Equilibrium equations
        • Small strain tensor
        • Hooke’s law
        • Weak form of the equilibrium equation
        • Finite elements
          • Triangular elements
          • Quadrilateral elements
          • Tetrahedron elements
          • Eight node brick elements

 

    • Structural Elements
      • Space truss
      • Euler-Bernoulli beams
      • Plate theory

 

  • Solution method and stability
    • Explicit time integration method
    • Lagrange multiplier method
    • Augmented Lagrange multiplier method