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Abstract: The quantum efficiency (��) or gain (�) of a photoconductive device is most 

commonly given in the literature as a ratio of carrier lifetime to transit time, allowing for 

a value much greater than unity. In this work, by assuming primary photoconductivity, 

we reexamine the photoconductive theory for the device with an intrinsic (undoped) sem-

iconductor, with nearly zero equilibrium carrier densities. Analytic gain formula is ob-

tained for arbitrary drift and diffusion parameters under a bias voltage and by neglecting 

the polarization effect due to the relative displacement in the electron and hole distribu-

tions. We find that the lifetime/transit-time ratio formula is only valid in the limit of weak 

field and no diffusion. Numerical simulations are performed to examine the polarization 

effect, confirming that it does not change the qualitative conclusions. We discuss the dis-

tinction between two ��  definitions used in the literature: accumulative ��  (�����) , 

considering the contributions of the flow of all photocarriers, regardless of whether they 

reach the electrode; and apparent �� (�����), measuring the photocurrent at the elec-

trode. In general, ����� > �����, due to an inhomogeneous photocurrent in the channel; 

however, both approach the same unity limit for strong drift. We find that ����� ¹  ����� 

is a deficiency of the commonly adopted constant-carrier-lifetime approximation in the 

recombination terms. 

Keywords: photoconductive gain; quantum efficiency; drift–diffusion equation; intrinsic 

semiconductor 

 

1. Introduction 

A photoconductive device is a special type of photodetector that consists of a metal–

semiconductor–metal (MSM) structure [1–5]. The quantum efficiency (��) or gain (�) 

of a photoconductive device has been observed for over 150 years in a wide variety of 

materials [6]; however, the photoconductive gain theory still exhibits considerable con-

troversy and ambiguity in the literature. The quantum efficiency is defined as �� =

��/��� , where ��  and ���  are the numbers of photogenerated carriers and absorbed 

photons per unit time, respectively. The gain is also commonly expressed as the ratio of 

the carrier recombination lifetime �  to the carrier transit time ��  over the conductive 

channel [2,7–14]. 

� =
�

��
. (1a)
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If both electrons and holes are considered, � is then given as [2,8,12,13]. 

� =
��

��,�
+

��

��,�
, (1b)

where ��  and ��  are the electron and hole lifetimes, respectively, whilst ��,�  and ��,� 

are their respective transit times from one electrode to another. This simplistic equation 

implies that � can be increased by increasing � and/or by decreasing ��. Since its initial 

appearance [11], Equation (1) has been widely used to explain the experimentally ob-

served photoconductive gains for various devices: due to a long recombination lifetime 

[8,12,13], a short transit time by having a high carrier mobility [8,12], by increasing applied 

voltage [15], or by shortening channel length of the device [7,12,15]. Additionally, carrier 

trapping within the photoconductive channel (e.g., on the surface), thought to increase �, 

is often used as the mechanism for the observed high gain [8]. 

However, Equation (1) cannot be derived rigorously from the drift–diffusion equa-

tions with photoexcitation that govern the carrier motions. By adopting an ambipolar-

transport approximation, approximate analytic solutions of the drift–diffusion equations 

can be obtained for cases with high background carriers from either doping or thermal 

excitation [3,16]. Furthermore, Equation (1) is obtained under two questionable assump-

tions: (1) when the detector is uniformly illuminated, the carrier distribution under an 

applied voltage remains uniform as in the zero bias; (2) all carriers, no ma�er where they 

are generated (i.e., at any location relative to the electrodes), contribute equally to the pho-

tocurrent. The first assumption is invalid when realistic boundary conditions (BCs), such 

as vanishing BCs, are applied to the MS contacts in solving the drift–diffusion equations 

[3,5,16,17]. More discussion on the BCs is given in the next section. The second assumption 

would be valid if the current of one carrier type alone could close the circuit without loss 

(e.g., all electrons exiting the anode return to the conduction band through the cathode). 

However, this assumption is inconsistent with the definition of primary photoconductiv-

ity [1,2,18,19], where one incident photon can create at most one electron–hole pair. In a 

steady state, an electron and a hole are needed together to close the circuit. This implicitly 

assumes that a conduction-band electron exiting from the anode can only return to the 

photoconductor through the cathode to the valence band, i.e., there is no carrier recycling 

within the same band. In this case, since electrons generated at a distance away from the 

collection electrode (i.e., anode) will decay in number while drifting toward the electrode, 

those generated at different distances from the electrode will contribute differently to the 

photocurrent. Specifically, for the carriers that either can or cannot reach the electrode, 

their contributions to the photocurrent are given by the ratio of their travel lengths toward 

collecting electrode to the channel length of the device [1,19–21]. 

To further understand the mechanism(s) of the photoconductive gain, we (re)exam-

ine a less well-studied case of the photoconductive gain theory of a MSM device, with an 

intrinsic or undoped semiconductor that has negligible equilibrium carrier densities, al-

lowing for arbitrary drift and diffusion conditions [1,16,17,19]. On the one hand, this is the 

case closest to primary photoconductivity, but, perhaps surprisingly, has not been studied 

in a comprehensive manner. For instance, previous studies often neglected the effect of 

diffusion [1,17,19,21]. On the other hand, when diffusion was included, high equilibrium 

carrier densities were assumed, to adopt an ambipolar approximation [16]. However, the 

minimal equilibrium carrier densities have some unique advantages for certain applica-

tions. High equilibrium carrier densities lead to a high dark current. Besides the well-

known drawbacks such as reduced signal-to-noise ratio, increased power consumption, 

dynamic range limitation, and cooling requirements, the high dark current also prevents 

the utilization of some of the unique effects of a photodetector with an exceptionally low 

dark current, for instance, recently reported optical logic and amplification functions un-

der the illumination of two or more light beams [22,23]. For a photoconductive device 
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with minimal equilibrium carrier densities, the key assumption, ��(�) » ��(�), of the am-

bipolar transport approximation [24] is invalid, because the distributions of the excess 

electrons and holes can exhibit significant relative displacement, a polarization effect, un-

der an external field. Thus, the treatment required for the device of interest to this work is 

distinctly different from the devices with high background carrier densities, because the 

ambipolar-transport approximation is not applicable for the former case. In fact, the the-

ory for the intrinsic semiconductor with minimal equilibrium carrier densities has a few 

tricky aspects that have not been properly discussed. It could be viewed as a relaxation 

semiconductor with a very long dielectric relaxation time [25]. 

Furthermore, we note that in the literature, two subtly different �� definitions have 

been used, but without being explicitly distinguished. One definition, which we refer to 

as apparent quantum efficiency (�����), evaluates the photocurrent collected at the anode 

or cathode that should correspond to what is actually measured experimentally [19]. The 

other definition, which we refer to as accumulative quantum efficiency (�����), considers 

all photocurrents that ever flow in the device, regardless of whether they reach the elec-

trodes [1,3,16,17,19,21]. 

Assuming uniform illumination, uniform electric field, constant carrier lifetime, neg-

ligible carrier diffusion and a BC of ��(� = 0) = 0, the solution of the drift-only continu-

ity equation for the excess distribution of holes (neglecting the label “p” in the subscripts 

of the parameters) is given below [17] 

��(�) = �� �1 − ��� �−
�

���
��, (2)

where � is the photogeneration rate of electron–hole pairs, ��� = ��� the drift length or 

carrier mean free path, �  the carrier mobility, and � the applied electric field. By evalu-

ating the drift current at � = � , where �  is the channel length of device, Equation (2) 

would lead to ��, equivalent to �����, given below 

����� =
���

�
�1 − ��� �−

�

���

��. (3)

In the limit of ��� ≪ � , one finds ����� ≈ ���/� = �/�� ; however, when ��� ≫ � , 

����� → 1. Thus, if only the primary conductivity is considered, Equation (1a) appears to 

be an inappropriately generalized low-drift limit result of Equation (3). On the other hand, 

the carrier distribution given by Equation (2) can be used to calculate the photocurrent by 

averaging the carrier density over the channel length [17,21]. Based on this consideration, 

�� for one type of carrier (e.g., holes), without considering carrier diffusion, is given be-

low as [17] 

�����,� =
���

�
�1 −

���

�
�1 − ��� �−

�

���
���. (4)

In fact, it can be shown that this spatial averaging scheme is equivalent to evaluate 

�����  [1,19] (see Appendix A), which yields the �� given by Equation (4). Only in the 

limiting case of ��� ≪ � , one finds �����,� ≈ ���/� = �/�� . On the other hand, when 

��� ≫ �, one has �����,� → 1/2. Therefore, if only the primary conductivity is considered, 

Equation (1a) appears to be an inappropriately generalized low-drift limit result of Equa-

tion (4). If both types of carriers have the same mobility and lifetime, or a mobility–lifetime 

product, they will contribute equally to the total �����  , given as ����� = �����,� +

�����,�, which is limited to unity when ��� ≫ �. Consequently, Equation (1b) appears to 

be an inappropriately generalized low conductivity limit result of Equation (4) when both 

types of carriers are considered. 
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In this work, we adopt a few common approximations, such as uniform generation 

of electron–hole pairs, constant electric field, as well as constant carrier mobilities and 

lifetimes, independent of the electric field, carrier density, and position, as commonly 

adopted [1,16,17,19,21]. By solving the drift–diffusion equations of electrons and holes, 

under arbitrary conditions of drift and diffusion, we find analytic distributions of excess 

electrons and holes, as well as photocurrent of an intrinsic photoconductive device with 

negligible equilibrium carrier densities. We further show that the gain formula given by 

Equation (1) is the low-drift limit result of the general expression, when the effect of dif-

fusion is neglected. Additionally, we perform numerical simulations to examine the po-

larization effect, which confirms that the drift field, induced by the displaced electron and 

hole distributions, does not change the conclusions qualitatively. Our analytical and nu-

merical results, consistent with the conclusion based on the simplified models in the liter-

ature [1,17,19,21,26], show a unity gain limit within the framework of primary photocon-

ductivity. Finally, we compare the analytic results, using both �� definitions, with the 

results of numerical simulations and discuss the deficiency and consequences of the com-

monly adopted constant-carrier-lifetime approximation. 

2. Analytic Model 

Most MSM-type photoconductive devices adopt a lateral structure, where the device 

is uniformly illuminated from the side, such as those in early literature [2,17–20], as well 

as in many recent publications using nanowire-type structures [8,27,28]. In this work, we 

consider lateral photoconductive devices illuminated uniformly from the top. 

In a steady state, considering uniform generation, the total electron and hole carrier 

densities, �(�) = �� + ��(�)  and �(�) = �� + ��(�) , respectively, can be obtained by 

solving the drift–diffusion equations and the associated Poisson’s equation given below 

[12,13,16] 

��
��[��(�)]

��� + ���
�[��(�)]

��
+ ��[�� + ��(�)]

��

��
+ � − ��(�) = 0, (5a)

��
��[��(�)]

��� − ���
�[��(�)]

��
− ��[�� + ��(�)]

��

��
+ � − ��(�) = 0, (5b)

    
��

��
=

�[��(�)���(�)]

ee�
, (5c)

where �� and �� are the equilibrium carrier densities, ��(�) and ��(�) the photogen-

erated excess carrier densities, ��  and ��  the mobilities of electrons and holes, �� =

(����)/� and �� = (����)/� their diffusion coefficients, � the magnitude of the carrier 

charge, � the Bol�mann’s constant, � the temperature, and � and �(�) the generation 

and recombination rates of electron–hole pairs, respectively, whilst e and e� are the rel-

ative dielectric constant of the semiconductor and the permi�ivity of the vacuum, respec-

tively. For a particular case of interest to this work, we may assume �� = �� = 0, and the 

corresponding photocurrent densities, ��(�)  and ��(�) can be calculated, respectively, 

as below 

 ��(�) = ���,�(�) + ���,�(�) = ����(�)��(�) + ���
�(��(�))

��
, (6a)

 ��(�) = ���,�(�) + ���,�(�) = ����(�)��(�) − ���
�(��(�))

��
. (6b)
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If the carrier recombination rates can be described by constant electron and hole life-

times ( ��  and �� , respectively), i.e., ��(�) =  �(�)/��  and ��(�) = �(�)/�� , one can 

write � − ��(�) = � − ��(�)/��  and � − ��(�) = � − ��(�)/�� , where � = �� + � , 

whilst �� = �� ��⁄ = �� ��⁄   is the equilibrium rate of electron–hole pairs, respectively. 

Although the constant lifetime approximation has a few drawbacks, as discussed later, 

this is the only case for which analytic solutions of Equation (5) are obtainable. With this 

approximation, Equation (5) can be simplified as 

���,�
� ����(�)

��� + ���,�
���(�)

��
+ ������(�)

��

��
− ��(�) + ��� = 0, (7a)

���,�
� ����(�)

��� − ���,�
���(�)

��
− ������(�)

��

��
− ��(�) + ��� = 0, (7b)

��

��
=

�[��(�)���(�)]

ee�
, (7c)

where ���,� = ����� and ���,� = ����� are the drift lengths of electrons and holes, re-

spectively, whilst ���,� = �����  and ���,� = �����  are the corresponding diffusion 

lengths. The ¶E/¶x  term  ��(�) − ��(�)  in the drift–diffusion equation describes a 

charge polarization effect associated with the relative displacement of the electron and 

hole distributions induced by the external bias. The relative displacement of the electron 

and hole distributions leads to a polarization effect that modifies the field within the chan-

nel, e.g., screening or weakening the field in the central part of the channel. However, it 

might enhance the field somewhere closer to the electrodes. It can be seen from Equation 

(7c) that the impact of the ¶E/¶x term is inversely scaled by the square of a normalized 

Debye length �� = ��/�, where �� = �
ee���

����
 and � = �����. Qualitatively, for a small �� 

value or a large ��, the polarization effect is negligible. 

Further, we assume ¶E/¶x » 0  or the external field being much stronger than this 

perturbation [1,3,5,16,17,19,27]. The impact of this assumption is later examined by nu-

merical simulations. Under this approximation, Equations (7a) and (7b) can be solved an-

alytically and separately. However, despite that Equations (7a) and (7b) can be solved 

independently for different mobilities and lifetimes of electrons and holes, i.e., �� ≠ �� 

and �� ≠ ��, we note that the obtained solutions would be unphysical in two aspects: (1) 

the photocurrents at the anode (mostly the electron current) and the cathode (mostly the 

hole current) would be different, which disrupts the basic requirement of the current con-

tinuity in the external circuit and (2) the solutions for the carrier densities do not satisfy 

the overall charge neutrality within the photoconductive channel. These pitfalls have not 

been noticed previously in the literature. Since our focus is to determine the limiting value 

of the gain, we, therefore, first adopt additional assumptions of equal mobilities and equal 

lifetimes of electrons and holes, i.e., �� = �� and �� = ��. Because ���� ≠ ���� tends to 

reduce the gain compared to that with the equal product of the larger one, this additional 

constraint does not affect the conclusion regarding the maximum gain value. Neverthe-

less, we later examine effects by removing these assumptions. 

Depending on the assumption of the nature of the MS contacts, different BCs have 

been used in the literature. Solving the drift–diffusion equation typically requires two 

BCs. Often, the carrier densities at the electrodes are assumed to be equal to the thermal 

equilibrium values or to be zero [3,5,16,27]. However, we adopt a different set of BCs by 

assuming perfect carrier extraction at the electrodes. Mathematically, the carrier extrac-

tion by the electrode can be treated as equivalent to the surface recombination at the MS 
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interface, with standard BCs [29]: ��
����(�)�

��
= ���(�)  at � = 0  and −��

����(�)�

��
=

���(�) at � = � for the electrons (and similarly for the holes), where � is the electrode 

extraction velocity (resembling the surface recombination velocity). We take the limit of 

� → ¥ for perfect extraction. These BCs are appropriate for a Scho�ky junction, with the 

metal work function � significantly larger than the semiconductor electron affinity c, 

i.e., � − c ≫ ��, where the electrons encounter a “cliff” at the contacts [1]. � → ¥ implies 

that the carrier density goes to zero at the boundary, but the gradient is expected to be 

finite there. Thus, the solution will be the same as simply applying the vanishing BCs. 

The solution of Equation (7b) (neglecting the label “p” in the subscripts of the param-

eters) is given below 

��(�) = ��[1 − �� ���(−���) − �� ���(−���)], (8)

where �± =
����±����

� �����
�

����
�  , �� =

���(����)��

���(����)����(����)
> 0 , �� =

�����(����)

���(����)����(����)
> 0 

[5,27]. The solution for electrons ��(x)  can be obtained by substituting � with � − � in 

Equation (8). As ��� → 0 , Equation (8) recovers the drift-only result of Equation (2) in 

[�, �) [17]. Note that ��(x) and ��(x) depend only on two parameters: normalized drift 

length ��� = ���/� and normalized diffusion length ��� = ���/�, when expressed as nor-

malized densities ��(�) = ��(�)/(��)  and ��(�) = ��(�)/(��) , where � = �/�  is the 

normalized coordinate. Figure 1 plots the normalized carrier density ��(�)  for 

(��� = 0.1, 0.5, 1.0, 5.0; ��� = 0, 0.1, 0.2, 0.4, 0.6).  Generally, ��(�)  is highly nonuniform 

and asymmetric in the photoconductive channel and it is more symmetric as diffusion 

becomes more dominant. Evidently, only in the low-drift and low-diffusion case (e.g., 

��� = 0.1 and ��� = 0.1 in Figure 1a), �� → 1 (i.e., �� → ��) on the cathode side. This is in 

stark contrast to the common assumption of �� = ��, which leads to highly questionable 

Equation (1). 
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Figure 1. Normalized spatial distributions of photogenerated holes for different combinations of 

diffusion and drift parameters, ��� = (0, 0.1, 0.2, 0.4, 0.6) : (a) ��� = 0.1 ; (b) ��� = 0.5 ; (c) ��� = 1.0 ; 

and (d) ��� = 5.0. 

After being normalized to the maximum photocurrent ���� = ��� and by introduc-

ing normalized coefficients, L� = ���  and L� = ��� , the photocurrent density of the 

holes can be calculated by using Equation (7b) as given below 

��(�) = ��(�)/(���) = ���,�(�) + ���,�(�), (9)

where ���,�(�) = ���[1 − �� ���(−�L�) − �� ���(−�L�)]   is the drift current with diffu-

sion, whilst ���,�(�) = ���
� [−�� L����(−�L�) − �� L����(−�L�)]  is the diffusion current 

with drift. As ��� → 0 , it recovers the drift-only result in [�, 1) : ��(�) = ���[1 −

���(−�/���)] [19]. Again, the electron photocurrent density ��(�) can be obtained by sub-

stituting �  with (1 − �)  in Equation (9). Both ��(�)  and ��(�)  are, in general, highly 

nonuniform. Figure 2 plots ��(�) using the same parameters (without ��� = 0.1) as in Fig-

ure 1. 

  

  

Figure 2. Normalized spatial dependencies of hole photocurrent densities for different combinations 

of diffusion and drift parameters, ��� = (0, 0.1, 0.2, 0.4, 0.6): (a) ��� = 0.1; (b) ��� = 0.5; (c) ��� = 1.0; 

and (d) ��� = 5.0. 

Due to the bidirectional nature of the carrier diffusion, a diffusion typically results in 

reduction in the net photocurrent. As shown in Figure 2a, with a fixed ���  while increas-

ing ��� , ��(� = 0) at the anode decreases (becoming more negative), whereas ��(� = 1) 

at the cathode increases. For a small ���   and large ���   (e.g., ��� = 0.1  and ��� = 0.6  in 

Figure 2a), ��(�) is close to being anti-symmetric with respect to the center; thus, the av-

erage photocurrent is expected to be small (exactly zero for ��� = 0), as expected for the 
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diffusion dominating case. However, the diffusion effect is suppressed with increasing 

drift length ���, i.e., for a fixed ��� , ��(�) increases with increasing ���  from Figure 2a to 

Figure 2d. For a large ���  and small ���  (e.g., ��� = 5.0 and ��� = 0.2 in Figure 2d), ��(�) 

is positive in almost the whole channel and approaches unity at � = 1, as expected for the 

drift-only case. 

The total normalized photocurrent density, �(�) = �(�)/(���) = ��(�) + ��(�) , in-

cluding the contributions of both electrons and holes, can be calculated as 

�(�) = ���(�) + ���(�), (10)

With the drift term ���(�) = 2��� �1 − �� ��� �−
L�

�
� ���ℎ �L� �� −

�

�
�� −

�� ��� �−
L�

�
� ���ℎ �L� �� −

�

�
���  and the diffusion term ���(�) =

2���
� �−��L� ��� �−

L�

�
� ���ℎ �L� �� −

�

�
�� − �� L���� �−

L�

�
� ���ℎ �L� �� −

�

�
��� . The photo-

current density, �(� = 0) or �(� = 1), at the anode or cathode, respectively, represents the 

actual photocurrent that goes through the external circuit and can be directly measured. 

A short-circuit condition is implicitly assumed in the calculation. Thus, �(� = 0) =

�(� = 1) or more generally �(� = 0) = �(� = �) is expected, as indeed yielded by Equa-

tion (10), which further constrains the selection of the BCs at the electrodes. 

We then calculate ����� as given below 

����� = ���[1 − � ���ℎ(��)���ℎ(�)], (11)

where � = �1 + 4
���

�

���
�    and � =

���

����
�  . Note that Equation (10) yields ���(� = 0) = ���(� =

1) = 0 , as a direct result of adopting vanishing BCs. Thus, ����� = ���(� = 0) =

���(� = 1). Although Equation (11) is from the “diffusion part” of Equation (6b) or ���(�) 

in Equation (10), it recovers the result of drift-only current given by Equation (3) when 

��� → 0. When ��� ≪ 1, �����  can be expanded to the first order in ���  

����� ≈ ��� �1 −
�

���
���ℎ �

�

���
��. (12)

When ��� → 0  and ��� ≪ 1 , ����� ≈ ��� , the same as Equation (1a). As ��� ≫ 1 , 

����� → 1, as does Equation (3). By calculating the spatially averaged photocurrent den-

sity, we obtain the ����� for holes: 

�����,� = ���{1 − ����[coth(��) − ���ℎ(��)cosh(�)]}. (13)

Note that the spatial average of the “diffusion term” in Equation (6b) is identically 

zero for any ���  and ��� ; thus, only the “drift term” contributes to the photocurrent. For 

��� → 0 , �����,�  becomes Equation (4); when ��� ≪ 1 , �����,� ≈ ���  and when ��� ≫ 1 , 

�����,� → 1/2 . The total �����   is given by ����� = �����,� + �����,� , which is simply 

2�����,� or 2�����,�, when �� = �� and �� = ��. Thus, �����  also has a unity limit. For 

a finite ��� , when ��� ≪ 1, �����,�  can be expanded to the first order in ��� , yielding: 

�����,� ≈ ��� �1 − 2��� ���ℎ �
�

����
��. (14)

This result is consistent with [3], where the zero-field carrier density distribution is 

used for the calculation. When ��� → 0 and ��� ≪ 1, ����� ≈ 2��� , consistent with Equa-

tion (1b). 

Figure 3a plots �����  and �����   vs. ���   for ��� = 0, 0.2, 0.4 , and 0.6 , showing 

����� > �����  in general. Both ��  approach the unity limit as ��� ≫ 1 , which is true 

even as ��� → 0, as also shown in Figure 3a. In the limit of ��� → 0 and ��� ≪ 1, ����� →

2���, whereas ����� → ���. Here, a factor of 2 difference is because of ��(� = 1) → ���, but 
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��(� = 1) → 0  or ��(� = 0) → ���   and ��(� = 0) → 0 , whereas both ��(�)  and ��(�)  are 

averaged to ���  . On the other hand, in the limit of ��� ≫ 1 , ��(� = 1) → 1  and 

��(� = 1) → 0 , whilst ��(� = 0) → 1  and ��(� = 0) → 0 , i.e., at each electrode only one 

type of carrier contributes to the photocurrent, which contradicts the commonly accepted 

Equation (1b), where both the electrons and holes contribute to the photocurrent at each 

electrode. The situation is like the short-circuit current calculation in a solar cell, where 

only one type of carrier is considered, even though a uniform carrier distribution is as-

sumed [30]. It can also be seen from Figure 3a that the diffusion effect, which results in the 

bidirectional motion of the carriers, tends to reduce the photocurrent, compared to the 

drift-only case where the carrier motion is unidirectional under the applied field. Figure 

3b–d compare ��(�) , ��(�) , and �(�) = ��(�) + ��(�)  with the spatially averaged value 

����  (equivalent to �����  ) for three representative ( ���, ��� ) combinations: low field 

(0.2, 0.2) , medium field (1.0, 0.2) , and high field (5.0, 0.2) , respectively, and illustrate 

how each type of carrier contributes to the total photocurrent at different field strengths 

measured by ��� . When diffusion is significant, as in Figure 3b, ��(�) and ��(�) tend to 

have opposite signs and partially cancel each other at the electrodes, yielding a smaller 

net photocurrent. However, when the drift is dominant, as in Figure 3d, one of ��(�) and 

��(�) diminishes at the respective electrode, yielding a larger net photocurrent, approach-

ing ����. Physically, the cancelation of the ��(� = 0) and ��(� = 0) can be understood as 

that some electrons reaching the anode may go back to the valence band directly, instead 

of flowing through the external circuit, which is equivalent to saying that some holes dif-

fuse out from the anode. In the case with diminished diffusion, ��(� = 0) → 0, no empty 

state in the valance band is available for the electrons to fill. Thus, the whole electron cur-

rent flows through the external circuit and is the total current at the anode. 
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Figure 3. (a) Quantum efficiencies ����� (dashed lines) and ����� (solid lines) vs. drift length ��� 

for different ��� values, whilst the green line represents the maximum quantum efficiency ����� =

1. The total normalized photocurrent density �(�), electron component ��(�), and hole component 

��(�) vs. normalized distance �, compared to the spatially average photocurrent density ���� for 

three different (���, ��� ) combinations: (b) low field (0.2, 0.2) ; (c) medium field (1.0, 0.2) ; and (d) 

high field (5.0, 0.2). 

Interestingly, under the commonly adopted assumption of constant lifetimes, the to-

tal photocurrent �(�) is typically nonuniform, as shown in Figure 3b–d. The spatial mod-

ulation is more prominent in the case of low field or a small ���  as shown in Figure 3b, 

but as the applied field increases, �(�) → ����, as shown in Figure 3d. This spatial nonuni-

formity of the current is inconsistent with the conventional wisdom that the current 

should be constant throughout the circuit under continuous and uniform illumination 

[31]. However, from Equations (6) and (7), one finds ��/�� = (�/�)[��(�) − ��(�)] ≠ 0. 

The inhomogeneity decreases with increasing ���, since the significance of the recombi-

nation term diminishes. Fundamentally, this current inhomogeneity is caused by the de-

ficiency of the constant-carrier-lifetime assumption for describing the carrier recombina-

tion. More generally, we should expect that ��(�)/�� = �[��(�) − ��(�)] = 0, since in the 

steady state, condition ��(�) = ��(�) is required. This equality is obvious for the inter-

band radiative recombination, usually expressed as � = ���, where � is the radiative 

recombination coefficient. For the recombination through trap states, the Shockley–Read–

Hall (SRH) model [32,33] automatically ensures equality. If ��(�) = ��(�) is enforced in 

the drift–diffusion equations, we expect the two �� definitions to be equivalent. Other 

non-desirable effects of the constant-carrier-lifetime approximation have also been dis-

cussed in the past [31]. Thus, a more comprehensive model should be developed to elim-

inate this deficiency, as shown as necessary for other problems [34,35]. However, the drift–

diffusion equations become nonlinear where analytic solutions are not obtainable and 

even numerical solutions are much more challenging [31]. 

3. Numerical Solutions 

To obtain the analytic solutions of drift–diffusion equations, we have assumed 

¶E/¶x = 0 . When applying the commonly adopted vanishing BCs within the constant-

lifetime approximation, we have further assumed �� = �� and �� = ��, to yield physi-

cally meaningful results. Here, we use numerical approaches to discuss the impacts of 

these approximations. 

We first address the polarization effect, caused by the relative displacement of the 

electron and hole distributions, i.e., ��(�) − ��(�) ≠ 0, and induced by the applied field 

�� = �/�. The polarization effect is expected to be strong for small �� (corresponding to 

a large �� value) and ���  values. Either a large �� or ���  diminishes the excess carrier 

densities in the channel, thus, the polarization field. If the total field is wri�en as �(�) =

�� + ��(�), the change in the � field ��(�) can be expressed in terms of a potential F(�) 

through ��(�) = − �F(�) ��⁄ . Besides the ¶E/¶x term, ��(�) also affects the drift term, 

changing ���  to ���,�[1 + ��(�)/��], where ���,� is the drift length determined solely by 

�� . By defining � = F/��  with �� = ��/� , one can write ��(�)/�� =  − ��(x) ��⁄   with 

�� = ���,�/���
� = �/��. Equation (7) can be then modified as given below 

����(�)

��� +
���,�,�

���,�
�

���(�)

��
− � �

�(��(�))

��

��(�)

��
+ ��(�)

���(�)

��� � −
��(�)

���,�
� +

�

���,�
� = 0, (15a)

����(�)

��� −
���,�,�

���,�
�

���(�)

��
+ � �

�(��(�))

��

��(�)

��
+ ��(�)

���(�)

��� � −
��(�)

���,�
� +

�

���,�
� = 0, (15b)
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���(�)

��� − 
���(�)���(�)�

��
� = 0, (15c)

where ���,�,� and ���,�,� are, respectively, the drift lengths for electrons and holes deter-

mined solely by the external applied field, whilst � = 0 or � = 1 indicates the absence or 

presence of the polarization effect, respectively. 

Solving the coupled nonlinear equations numerically is challenging for an arbitrarily 

small ��. Here, the goal is to qualitatively understand the potential impact of the polari-

zation effect. For a not-too-small �� (e.g., �� ≥ 0.1), Equation (15) can be solved numeri-

cally for � = 1 using an iterative method developed in this work. For simplicity, we still 

adopt �� = ��  and �� = �� , while applying the same BCs: ��(� = 0) = ��(� = 1) =

��(� = 0) = ��(� = 1) = 0  and �(� = 0) = �(� = 1) = 0 . Explicitly, by se�ing � = 0 , 

we first obtain the 0-th order carrier concentrations ���(�) and ���(�), by solving Equa-

tions (15a) and (15b), then use the results in Equation (15c) to solve for the 0-th order po-

tential ��(�); next, using ��(�), and se�ing � = 1, to solve for ���(�) and ���(�). This 

process is repeated until the results converge (typically within 10 iterations). The photo-

currents at i-th iteration are evaluated as 

��,�(�) = ���,�,� �1 − �
���,�

�

���,�,�
����

� (�)� ���(�) + ���,�
� �(���(�))

��
, (16a)

��,�(�) = ���,�,� �1 − �
���,�
�

���,�,�
����

� (�)� ���(�) − ���,�
� �(���(�))

��
, (16b)

��(�) = ��,�(�) + ��,�(�).  (16c)

Figure 4 illustrates the impact of the polarization effect on different quantities, as-

suming (���, ��� , ��) = (0.2, 0.1, 0.1), (e.g., a possible combination of a moderately high ex-

citation condition: � = 16 , � = 3 μm , � = 300 �  and �� » 2.4 ∙ 10�� cm�� ), for � = 0 

and � = 1 after 10 iterations. Figure 4a compares ���(�) and ���(�), showing that the 

polarization effect makes the excess carrier distribution more uniform near the central re-

gion due to the depolarization field ��(�). Figure 4b compares ��(�) and ��(�), showing 

reduced current near the central region, while increased toward the two electrodes. Re-

ducing �� from 0.5 to 0.1 leads to the stronger polarization effect, but the impact is rela-

tively small: an increase in ����� from 0.196 to 0.206 and decrease in �����  from 0.289 

to 0. 276, as shown in Figure 4c and 4d, respectively. 
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Figure 4. The impact of polarization effect on the excess carrier distributions and photocurrent den-

sity: (a) normalized carrier distributions ���(�) and ���(�) vs. normalized distance �; (b) normal-

ized spatial photocurrent densities ��(�)  and ��(�)  vs. normalized distance � ; (c) quantum effi-

ciency ����� vs. normalized Debye length ��; and (d) quantum efficiency ����� vs. normalized 

Debye length ��. 

We next examine the possible impacts of non-equality in the mobility-lifetime prod-

uct of electrons and holes. We assume �� ≠ �� but �� = �� and neglect the polarization 

effect (� = 0). For the case of �� = �� and �� = ��, the charge neutrality condition ������ =

∫ ��(�)�� =
�

�
����� = ∫ ��(�)��

�

�
  is satisfied automatically. However, assuming �� > �� , 

solving Equation (7) under the same BCs of ��(� = 0) = ��(� = 1) = ��(� = 0) =

��(� = 1) = 0 would result in �(� = 0) > �(� = 1) and ������ < �����, which violates the cur-

rent continuity and charge neutrality conditions. 

The physical explanation is that when electrons coming out of the anode cannot be 

accepted by the cathode at the same rate when �� > ��, an accumulation of electrons will 

occur at the boundary with the anode. From ��/�� = ��[��(�) − ��(�)], one can see that 

if �(� = 0) = �(� = 1) is satisfied, ������ = ����� will automatically be satisfied as well. There-

fore, we need to find ��(0) ≠ 0 that can satisfy �(� = 0) = �(� = 1). One possible solu-

tion is to allow ��(� = 0) > 0, whilst other BCs are kept unchanged. Although an analyt-

ical solution can still be obtained, it is too complex to be shown here. Thus, only numerical 

results for �� = 4�� are given to illustrate the effects. Figure 5a,b plot the carrier distri-

butions of the electrons and the hole, ��(�)  and ��(�) , respectively, for two different 

combinations of ����,�, ���,�� and ����,�, ���,��. Figure 5c,d plot ��(�), ��(�), and �(�), re-

spectively, for the same set of parameters. As expected, with increasing drift and diffusion 

parameters, both components tend to become linear; thus, the total photocurrent tends to 

become uniform. 
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Figure 5. Normalized carrier distributions and photocurrent densities: (a) normalized electron dis-

tributions ��(�)  vs. normalized distance � ; (b) normalized hole distributions ��(�)  vs. normal-

ized distance � ; (c,d) total normalized photocurrent density �(�) , the electron component ��(�) , 

and the hole component ��(�) vs. normalized distance �. 

4. Simulation Results 

To examine how our analytic model compares to a commonly available device sim-

ulator, we perform numerical simulations using “Drift-Diffusion Lab” from nanoHub.org 

[36]. Note that this simulation tool also assumes constant carrier lifetimes, but considers 

other effects, such as the field-dependent mobility, i.e., � = �(�), that is not considered in 

our model. To make meaningful comparisons, we a�empt to identify a material system 

(namely Ge) together with a set of material parameters that can minimize the additional 

complications. However, we would like to clarify that although Ge is used as a prototype 

material, we do not intend to investigate photodetectors based on Ge. To investigate a 

realistic photodetector, one would need to consider the specific band structure of the ma-

terial, for instance, the proximity of the indirect and direct conduction-band edges in Ge 

[37]. 

Firstly, by le�ing �� = �� and �� = ��, we compare the potential differences in the 

carrier distributions. Germanium (Ge) is selected as the active material, with the following 

parameters: m = 10 cm�V��s�� , � = 10 ns , � = 3 μm , � = 10�� cm��s�� , � = 300 K , and 

surface recombination velocity at the electrodes � = 10��cms��, the largest allowed value 

in the simulator. Although � is meant to be the surface recombination velocity, we take it 

as the carrier extraction velocity that is assumed to be infinity in the analytic model. Figure 

6a plots ��(�)  and ��(�)  with ���, ��� = (10, 10) cm�V��s�� . The simulation results 

(solid curves) are compared to those obtained from the analytic model (dashed curves). 

As shown in the figures, for a small applied voltage (e.g., 0.1 V or ��� = 0.111), the sim-

ulation results are significantly different from those of the analytic model, but the differ-

ence diminishes for larger applied voltages (e.g., > 1.0 V or ��� > 1.111). 

Secondly, we examine the effect of polarization on the J-V characteristics. For the 

same parameters, Figure 6b plots the J-V curves of the simulated results ���� (black solid 

curve) and compares them with the analytic results: ����  (red solid curve) and ���� (blue 

solid curve). We find ���� > ���� > ����, but they all approach the unity limit for the strong 

drift. 

Thirdly, we examine the differences in the spatial variation in the photocurrent. By 

using the simulated carrier densities from Figure 6a, we calculate the spatial variations in 

the photocurrents by using Equation (7), in which the electric field �(�) is obtained by 

integrating Equation (7c), while keeping same voltage difference between the electrodes 

as the applied voltage. The results are shown in Figure 6c,d (solid curves), in comparison 
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with the results of the analytic model (dashed curves) for 0.1 V, 1.0 V, and 2.0 V. Due to 

the singularity in taking a derivative using the numerical data, out of 150 data points, the 

last 2 data points closest to the respective electrode are found unreliable, and, thus, they 

have been omi�ed in the plots. However, the extrapolated values at the electrodes are 

close to the direct current outputs of the simulations. Thus, the values of the simulation 

current are used for the end points at � = 0 and � = �. Clearly, the total current remains 

nonuniform, with a maximum at the center, with comparable modulation amplitudes 

compared to the analytic results. The ratios between the maximum and minimum points 

are found to be 1.611, 1.205, and 1.108, from the analytic results, compared to 1.382, 1.099, 

and 1.050 from the simulation results, for 0.1 V, 1.0 V, and 2.0 V, respectively, and the 

photocurrents become more uniform under a larger applied electric field. In addition to 

the systematically larger ����(�) compared to that of the analytic model ����(�), the sim-

ulated results show upward bending near the end points. 

Furthermore, we would like to point out that the differences between analytic and 

simulation results are not simply due to whether the polarization effect is included or not. 

In fact, according to our numerical simulation results as described in the previous section, 

the polarization effect is expected to be minimal for �� = 1.604. However, the simulator 

considers other effects, such as the carrier density and field dependences of mobility. 

Therefore, even using the same mobility and lifetime parameters for the electrons and 

holes, the relationship of ��(x) = ��(� − �) , predicted by the analytic model, is often 

found invalid for the simulated results. Consequently, we found that the charge neutrality 

condition, i.e., ∆����� = ∆�����, does not always hold true in the simulated results. However, we 

have made a concerted effort to identify the parameters, which ensures that the charge 

neutrality condition in the photoconductive channel is nearly satisfied, as shown in Figure 

6a. Overall, the numerical simulations, which include the polarization effect and beyond, 

do not result in qualitative differences from the analytic model, but do exhibit significant 

quantitative differences, particularly for the cases of small ���  values, for instance, in Fig-

ure 6a,c when ��� ≈ 0.1. 
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Figure 6. A comparison of the simulation results and analytic results: (a) electron distributions 

��(�) and hole distributions ��(�) for 0.1 V and 1.0 V; (b) the simulated photocurrent density ���� 

and analytic photocurrent densities ���� and ���� vs. applied voltage �; (c,d) spatial dependences 

of the simulated photocurrent density ����(�) and analytic photocurrent density ����(�) for 0.1 V, 

1.0 V, and 2.0 V. The green lines represent the maximum photocurrent density ���� = ��� =

4.8 mAcm��. 

5. Discussion 

There are various possible secondary photoconductive effects, such as the carrier in-

jection from the electrode, caused by either thermal injection (i.e., space-charge limited 

current or SCLC) [1] or light-induced changes in the MS interface [38], carrier recycling or 

replenishing [1,4,13,17,39], and other mechanisms [27,40]. Often, photoconductive devices 

involve doped semiconductors [3,5]. In fact, doping or substantial intrinsic carrier density 

in the photoconductive channel bears some similarity with the SCLC effect, except that 

the charges that induce the dark current are provided internally for the former and in-

jected from the electrode for the la�er. In both cases, the presence of the pre-existing 

charges may alter the distributions of the photogenerated carriers, and thus, the quantum 

yield. However, including any of these secondary photoconductive effects makes it im-

practical to obtain rigorous analytic solutions for the photocarrier distributions and pho-

tocurrent. Nevertheless, various approximate formulae have been given for different sit-

uations [16,39,41,42]. Furthermore, for a doped device and under the ambipolar-transport 

approximation, the gain limit has been found to be ���� =
�

�
�1 +

����

����
�, where ���� ����⁄  

is the ratio of majority to minority carrier mobilities [3,16]. This formula indicates that a 

modest gain above unity is possible, as verified by numerical simulations [5]. When the 

equilibrium carrier densities are much greater than the excess carrier densities ��(�) and 

��(�) and when the ambipolar diffusion length is much smaller than the channel length, 

a gain formula equivalent to Equation (1b) is obtained for an intrinsic device, suggesting 

that quantum yields far exceeding unity are possible [16]. 

However, as confirmed analytically and by simulations in this work, if only the pri-

mary photoconductivity is considered, the undoped photoconductive devices with mini-

mal equilibrium carrier densities cannot have � or �� above unity, independently of the 

values of the device parameters. The widely used gain formula given by Equation (1) ap-

pears to be the low-field-limit result of Equations (11) and (13), when the effect of diffusion 

is neglected. Secondary photoconductive mechanisms are indeed required to understand 

many experimental reports of the greater-than-unity gains. However, for various possible 

secondary photoconductivity mechanisms, the simplified form of photoconductive gain 

given by Equation (1) is unlikely to remain valid in general. Extending the current work 
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to include secondary photoconductive mechanisms should be the subject of our future 

work. 

6. Conclusions 

By assuming primary photoconductivity, perfect carrier extraction, constant param-

eters of carrier lifetimes and mobilities, negligible thermally generated carriers, and neg-

ligible polarization effect, an analytic model with arbitrary strength of diffusion and drift 

for a photoconductive device with an intrinsic semiconductor has been provided. Numer-

ical simulations have been performed to confirm the conclusions of the analytic model. 

We have shown that: (1) while the general theory is capable of recovering the drift-only 

results in the early literature, the photoconductive gain remains limited to unity; (2) the 

commonly adopted photoconductive gain formula as the ratio of the lifetime �  to the 

transit time ��  is only valid in the low-drift length region, when the effect of diffusion is 

neglected; (3) when solving the drift–diffusion equations, proper care should be taken in 

selecting BCs to ensure the equality of photocurrents at both electrodes; (4) the impact of 

neglecting the polarization effect, due to the relative displacement of the excess electrons 

and holes, is relatively small; and (5) the non-equivalency of the ��  definitions, i.e., 

����� ¹ ����� , is the deficiency of the commonly adopted constant-carrier-lifetime ap-

proximation, which also leads to the nonuniform photocurrent in the channel. The in-

sights of this work should help in the reexamination of the photoconductive gain theories 

involving doped semiconductors and/or other secondary photoconductive effects. Thus, 

it lays the ground for understanding the mechanisms of the experimentally observed 

above-unity photoconductivity gains. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

MSM Metal–semiconductor–metal 

MS Metal–semiconductor 

G Gain 

QE Quantum efficiency 

QEapp Apparent quantum efficiency 

QEacc Accumulative quantum efficiency 

BC Boundary condition 



Photonics 2025, 12, 523 17 of 19 
 

 

SRH Shockley–Read–Hall 

Appendix A 

Hecht [19] and Mo�–Gurney [1] derived quantum efficiency by considering that for 

the carriers that either can or cannot reach the electrode, their contributions to the photo-

current are given by their travel lengths toward the collecting electrode in ratio to the 

channel length. In this consideration, if �� electrons are generated at a distance ��  from 

the anode and their number decays while they are drifting toward the electrode under a 

bias, the number of the electrons that do not reach the electrode weighted by the fraction 

of the travel distance is given as 

�� = �
�

�
� ∫ �

��

�
(−��), (A1)

whereas the number of the electrons that do reach the electrode weighted by the fraction 

of the travel distance is given as 

�� = �
��

�
� �(��). (A2)

The effective total number of electrons, ����, that contribute to the photocurrent is 

given by 

���� = �� + ��. (A3)

On the other hand, Ri�ner [16] and Many [17] used the average carrier density in the 

channel, ����, to calculate the photocurrent: 

���� = �
1

�
� � �

��

�

��. (A4)

By noticing that ∫ �(��
��

�
) = ∫ �

��

�
�� + ∫ �

��

�
�� = ���(��), one can see that these two 

approaches are equivalent, i.e., ���� =  ����. 
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