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ABSTRACT: The investigation of biexciton dynamics in single colloidal quantum dots
(QDs) is critical to biexciton-based applications. Generally, a biexciton exhibits an extremely
low photoluminescence (PL) quantum yield as well as very fast PL decay due to strong
nonradiative Auger recombination, making it difficult to investigate the biexciton dynamics.
Here, we develop a quantitative method based on intensity- and time-resolved photon
statistics to investigate the biexciton dynamics in single colloidal QDs. This robust method
can be used under high-excitation conditions to determine the absolute radiative and Auger
recombination rates of both neutral and charged biexciton states in a single QD level, and the
corresponding ratios between the two states agree with the theoretical predictions of the
asymmetric band structures of CdSe-based QDs. Furthermore, the surface traps are found to
provide additional nonradiative recombination pathways for the biexcitons, and their
contributions are quantified by the method.

Many-particle effects, manifested as the formation of
multiple excitons associated with Coulomb interactions

among photoexcited electrons and holes, tend to be more
significant in nanostructures than in bulk. The strong Coulomb
interactions in a confined volume lead to a number of novel
physical phenomena, including large splitting in electronic
states,1−3 enhanced intraband relaxation,4 efficient carrier
multiplication,5 and ultrafast multiexciton decay.6 Significant
research interest in multiexciton phenomena has been
stimulated by their relevance to emerging applications, such
as quantum dot (QD)-based photovoltaics,7 light-emitting
diodes,8,9 lasing,10 and entangled photon-pair sources.11,12

Because the multiexciton effects exhibit a nonlinear depend-
ence on the exciton number,13 often dominated by that of the
biexciton contribution,14 a clear understanding of biexciton
dynamics, particularly separating the intrinsic and extrinsic
effects, is pertinent for both fundamental physics and
application aspects.
The intrinsic and extrinsic effects, such as extra charges and

surface states, that commonly exist in QDs strongly affect the
exciton dynamics. When an extra charge is generated in the
QD, the charged single exciton becomes less emissive because
its energy would likely be transferred to the extra electron or
hole through a nonradiative Auger process.15−18 The surface
traps can also provide nonradiative channels to reduce the
photoluminescence (PL) quantum yield (QY) of the single
neutral exciton.19−24 The formation of the charged states and
the presence of surface traps can also result in Auger blinking
and band-edge carrier (BC) blinking, respectively.25 Although
the techniques for characterization of the single exciton are
relatively mature and the underlying physics is also fairly well

understood, the situation for multiple excitons, even biexciton,
is very different. Compared to the single exciton, the biexciton
has an extremely low generation probability and PLQY as well
as very fast PL decay due to the strong nonradiative Auger
recombination.26−30 However, biexciton dynamics can be
investigated through different experimental methods. For
example, the biexciton decay curve was extracted from the
PL decay by subtracting the single exciton component
measured at low pump fluences in ensemble transient
absorption spectroscopy.31−33 The biexciton lifetime could
also be obtained by photon correlation methods in the
ensemble or a single-particle level.34−36 The biexciton QY was
most often estimated with a second-order correlation function
[g(2)] method by combining it with the single-exciton QY in
single-dot spectroscopy in a weak excitation limit.26,37 Upon
simultaneous measurement of both the g(2) and PL-decay
curves, the biexciton QY can be determined even under higher-
excitation conditions.27 Because of the presence of extra
charges and surface states and the weaker signal, properly
characterizing the biexciton state to quantify the contributions
of the intrinsic effects (e.g., radiative and Auger process) and
extrinsic effect (e.g., nonradiative recombination through
surface traps) on a single-QD level remains challenging.
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In this work, we investigate the biexciton dynamics in single
colloidal QDs by a quantitative method based on intensity- and
time-resolved photon statistics. The method allows a single
QD to be excited under a higher-excitation condition to obtain
the absolute biexciton QY, independent of the single exciton
QY, PL-decay curves, etc. With this method, biexciton QYs can
be extracted from different intensity levels of the PL time
trajectory to investigate the biexciton dynamics. Our approach
provides the experimental investigation of the absolute
radiative and Auger nonradiative recombination rates of
neutral and charged biexciton states in a single QD level. In
particular, for the first time, we extend the analysis of the
nonradiative recombination process caused by surface traps
from a single exciton to a biexciton.
To study the biexciton dynamics in single colloidal QDs, a

confocal microscope combined with a Hanbury Brown-Twiss
(HBT) detection scheme is used for photon statistics (detailed
information can be found in section S1 and Figure S1). A time-
tagged, time-resolved, and time-correlated single-photon
counting data acquisition card is employed to record the
absolute arrival time of each photon with picosecond time
resolution. The detection of either one or two photons after
each excitation pulse is used to distinguish the single- or two-
photon event, respectively. The rates of single- and two-photon
events, denoted as N1 and N2, respectively, can be expressed as
(the detailed information can be found in section S2 and
Figures S2 and S3)

ξ= ×N FP Q 21 X X (1)

ξ= ×N FP Q Q 22 XX XX X
2

(2)

where F is the repetition frequency of the pulsed laser, PX and
PXX are the probabilities of populating the single exciton and

biexciton states in the QDs, respectively, QX and QXX are the
single exciton and biexciton QYs, respectively, and ξ is the
detection efficiency of each optical detection path in the HBT
detection scheme. The value of ξ is ∼0.075 for the two
detection paths in our system (detailed information can be
found in section S1).38 PX and PXX are descirbed by Poisson
distributions:26
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where ⟨N⟩ is the average number of photons absorbed per QD
per pulse26,27,39 and can be obtained by fitting the PL
saturation curve with the inverse exponential (1 − e⟨N⟩).39−41

To obtain a more accurate ⟨N⟩ value, the multiexciton
emission photons should be removed from the PL saturation
curve by the time-gating method,42−44 and then a single-
exciton saturation curve can be constructed to be fitted to
obtain the ⟨N⟩ value (detailed information can be found in
section S3 and Figure S4).
From eqs 1−4, the biexciton QY can be described as
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Therefore, the biexciton QY is determined by the rates of
single- and two-photon events (N1 and N2, respectively), as
shown in Figure S5. Compared to the g(2) method,26,37 the
method overcomes the limitation of the weak excitation
condition (⟨N⟩ → 0) to allow a single QD to be excited with a
higher-excitation condition (⟨N⟩ can be up to ∼0.64), which is

Figure 1. Biexciton QYs and radiative and nonradiative rates in a single QD in neutral and charged states. (a) Typical PL trajectory for a single QD
with a binning time of 10 ms, where PL blinking originates from the charging and discharging of the QD. (b) Corresponding FLID in color scale.
(c) Corresponding charged and neutral biexciton QYs. (d) Corresponding total decay rates, radiative rates, and Auger rates of the charged and
neutral biexcitons.
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important, because most practical applications would not be in
the weak excitation limit. This method allows for higher-
excitation conditions because the ratio of N2 and N1 in eq 5
can reduce the deviation of the calculation result of biexciton
QY (detailed information can be found in section S2 and
Figures S2 and S3). In addition, by taking the single-exciton
saturation curve in a time-gated fashion without contributions
from multiexcitons, we can accurately obtain the correspond-
ing ⟨N⟩ value, so the calculation accuracy of the biexciton QY
can be further improved. Under the higher-excitation
condition, the method allows us to extract the absolute
biexciton QY from different intensity levels of the PL time
trajectory. Therefore, a detailed intensity-dependent evolution
of biexciton dynamics as well as the effects of extra charges and
surface traps on biexciton dynamics can be obtained by the
method.
Before the investigation of the effects of extra charges and

surface traps on biexciton dynamics, it is necessary to
distinguish whether there are extra charges or surface traps
in a single QD and to dominate the exciton dynamics. The
extra charges and the surface traps can be distinguished by the
blinking mechanisms, because the charging and discharging of
QD result in Auger blinking, and the activation and
deactivation of surface traps result in BC blinking.25

A typical PL intensity trajectory of a single QD (alloyed
CdSe/CdxZn1−xS core/shell QDs) at ⟨N⟩ = 0.12 is shown in
Figure 1a. The transmission electron microscope (TEM)
image, absorption and emission spectra of the QDs, and the
method for sample preparation are presented in section S4 and
Figures S6 snd S7). Upon calculation of the average lifetime of
each bin, the corresponding fluorescence lifetime−intensity
distribution (FLID) can be obtained as shown in Figure 1b.
The PL intensities of 90K counts/s (blue region) and 27K
counts/s (green region) correspond to lifetime values of 23
and 4 ns, respectively. Therefore, the ratio of radiative rates
between the green and blue regions is ∼2, indicating that the
observed PL blinking is Auger blinking (involving extra
charge), which originates from the charging and discharging
of the QD.25 Consequently, the blue and green regions
correspond to the neutral and negatively charged states,
respectively. Using eq 5, the biexciton QY as a function of PL
intensity can be obtained as shown in Figure 1c. Each square in

the figure represents a biexciton QY value obtained for one PL
intensity level (with an interval of 3K counts/s). The biexciton
QYs are calculated by the values of N1 and N2 that are
extracted for different intensity levels. The error bars are
caused by the shot noise of photon counting.45 The average
QYs of the charged and neutral biexciton are ∼0.15 and ∼0.21,
respectively. Upon analysis of the corresponding biexciton
lifetimes obtained by a first photon analysis,46 the absolute
biexciton radiative and Auger rates of each state (Figure 1d)
can be calculated (see details in section S5), and the error bars
are derived from the fitting of the decay curves, as shown in
Figure S8. From Figure 1d, we can determine that the Auger
rate of the charged biexciton (kXX−

,A) is ∼1.7 times that of the
neutral biexciton (kXX,A), and the ratio of the radiative rates
between the neutral biexciton and charged biexciton (kXX−

,r/
kXX,r) is ∼1.0. The correlations between the ratio of the
radiative rates (kXX−

,r/kXX,r) and that of the Auger rates (kXX−
,A/

kXX,A) for ∼78 single QDs are presented in Figure 2a. The
histograms of kXX−

,r/kXX,r and kXX−
,A/kXX,A values are fitted by

Gaussian functions with values of 0.96 ± 0.03 and 1.32 ± 0.02,
respectively.
These values can be compared with the expected values for

CdSe-based QDs obtained using an asymmetric band structure
model.47,48 The charged biexciton has 2-fold degenerate 1Se
levels, and the extra electron resides in the 1Pe state,48 as
shown in Figure 2b. The interband transitions are forbidden, as
indicated by red dotted arrows. There are four radiative
pathways for the charged biexciton highlighted by the red
arrows in Figure 2b, which is same as that of the neutral
biexciton. Therefore, the theoretical value of kXX−

,r/kXX,r is ∼1,
which agrees with the experimental result of 0.96. The Auger
event is the recombination of one 1Se electron and one 1S3/2
hole accompanied by re-excitation of another charge carrier
(including the 1Pe electron as indicated by the black dotted
line in Figure 2b). The schematic illustration presents twelve
Auger pathways for the charged biexciton and eight Auger
pathways for the neutral biexciton. Hence, the expected ratio of
Auger rates between charged and neutral biexcitons should be
1.5 with a presumption that all of the Auger pathways are equal
in probability, closely resembling the value of 1.32 obtained in
our experiment.

Figure 2. Ratios and schematic for both radiative recombination and Auger nonradiative recombination rates of the charged and neutral biexciton
states. (a) Statistical distribution of the ratio of radiative rates (kXX−

,r/kXX,r) and of Auger nonradiative rates (kXX−
,A/kXX,A) between charged and

neutral biexciton states for ∼78 single QDs. The histograms of kXX−
,r/kXX,r and kXX−

,A/kXX,A with Gaussian fitting are shown along the horizontal
(top) and vertical (right) axes, respectively. (b) Schematic of radiative recombination pathways and Auger nonradiative recombination of the
charged biexciton state for a CdSe-based QD.
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Another type of blinking trajectory of the single QDs with an
⟨N⟩ of 0.3 is shown in Figure 3a, different from that in Figure
1. The corresponding FLID (Figure 3b) presents a linear
correlation between the PL intensity and the lifetime, which
means that the ratio between each state is 1. This type of
blinking is BC blinking, which originates from the activation
and deactivation of surface traps. BC blinking can be explained
by the multiple-recombination center (MRC) model,19,25,49

which assumes that the MRCs are distributed on the QD
surface; the single exciton state can either relax via a radiative
pathway and emit a photon or decay nonradiatively through
activated MRCs. These MRCs are short-lived shallow traps,
and the time scale of trapping and nonradiative recombination
is close to that of radiative recombination of the band-edge
exciton.25,49 At the bright state of PL intensity trajectories, the
QD mainly cycles between photon absorption to create an
exciton and radiative recombination, and radiative rate kX,r is
much higher than nonradiative recombination rate kX,nr. The
kX,nr is determined by the number of activated MRCs. When
more MRCs are activated simultaneously, the kX,nr becomes
higher, and the PL intensity of QDs will be further reduced.
According to eq 5, the biexciton QY (QXX) as a function of PL
intensity can be obtained as shown in Figure 3c, which can be
fitted by taking into account both the Auger process and the
surface trapping of biexcitons, as will be discussed later.
Applying the first photon analysis,46,50 we can obtain the
biexciton lifetime (τXX) for each PL intensity level, as shown in
Figure S9. The decay rate of each PL intensity level can be
obtained from the value of τXX and the corresponding value of
QXX, as shown in Figure 3d (see details in section S5). It shows
that the nonradiative rate of the biexciton (kXX,nr) increases

when the PL intensity decreases, while the radiative rate of the
biexciton (kXX,r) remains constant.
Because the surface traps strongly affect the PL emission of a

single exciton, the single-exciton PLQY can be expressed as

= +Q k k k/( )X X,r X,r X,nr (6)

We anticipate that the surface traps also affect the biexciton
recombination. For a quantitative insight into the effect of
surface traps on the biexciton dynamics, we fit the data points
in the Figure 3c with the consideration of the contributions
from both the Auger recombination and the surface traps. The
biexciton QY can be expressed as

= + +Q k k k k/( )XX XX,r XX,r XX,A XX,nr,trap (7)

where kXX,nr,tap is the nonradiative recombination rate of the
biexciton through the surface traps. Biexciton radiative rate
kXX,r is theoretically considered to be 4 times that of the single
exciton in previous reports.34,35,48,50−52 However, this ratio of
radiative rates also depends on the shell thickness of the QD,53

so that we give a more general expression to be

α=k kXX,r X,r (8)

Consistent with previous reports,25,50 kX,r remains constant for
the BC-blinking trajectory in Figure 3a. kX,r can be determined
to be 5.6 × 107 s−1 by the single-exciton QY and lifetime.
Therefore, upon combination of kX,r with kXX,r in Figure 3d, α
= kXX,r/kX,r = 3.7 for the single QD in Figure 3. More values of
α for other single QDs can be obtained in the same way.
Similarly, the biexciton nonradiative rate through the surface

traps can be expressed as

β=k kXX,nr,trap X,nr (9)

Figure 3. Effects of surface traps on biexciton QYs and radiative and nonradiative rates in a single QD. (a) Typical PL trajectory for a single QD
with a binning time of 10 ms and PL blinking that originated from the activation and deactivation of surface traps. (b) Corresponding FLID in
color scale. (c) Biexciton QY as a function of PL intensity for the PL trajectory in panel a and a fitted curve (red line). (d) Corresponding total
decay rate (kxx), radiative rate (kxx,r), and nonradiative rate (kxx,nr) of the biexciton as a function of PL intensity.
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Because the value of N1 is approximately equal to PL intensity
(I), it can be obtained from eqs 6−9 that
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where kXX,A is mainly influenced by the shell thickness of the
QD and is considered to be a constant for each PL intensity
level.30 Then, QXX as a function of PL intensity (I) (Figure 3c)
can be fitted by eq 10 with a β of 3.2. More values of β for
other single QDs were obtained in the same way. The
statistical distributions of α and β obtained for ∼72 single QDs
are summarized in Figure 4a. The histograms of α and β are
fitted by Gaussian functions with values of 3.76 ± 0.04 and
3.40 ± 0.22, respectively.
Next, we discuss the values of α and β with a theoretical

model shown schematically in Figure 4b. The single-exciton
state has one radiative pathway, while the biexciton state has
four radiative pathways (red arrows in Figure 4b). Therefore,
the theoretical ratio of radiative rates between the biexciton
and single exciton (α) equals 4.48 The experimental result of
3.76 ± 0.04 is close to the theoretical prediction. The
theoretical value of 4 was also demonstrated in CdSe/CdS
QDs by using photon correlation methods.34 For the single-
exciton state, there would be only one nonradiative pathway
provided by surface traps. For the biexciton state, the surface
traps capture an electron through two nonradiative pathways,
and subsequently, the electron captured by the surface
recombines nonradiatively with the hole in the core through
two other pathways, as illustrated by gray arrows in Figure 4b.
Therefore, there would be four nonradiative pathways
provided by the surface traps. Consequently, the theoretical
value of β should be 4. The deviation of the experimental value
of β (3.40 ± 0.22), as well as α (3.76 ± 0.04), from the
theoretical value may be attributed to the inadequate system
time resolution, the involvement of higher-order multiexcitons,
or the difference in the single-exciton and biexciton dipole
moments.54

In summary, we have developed a robust quantitative
method based on intensity- and time-resolved photon statistics
for investigating the biexciton dynamics in single QDs. This
method can be used under high-excitation conditions in
comparison to the established g(2) method. With this method,
the absolute biexciton QYs and radiative, Auger, and surface

nonradiative rates of single QDs have been obtained and
correlated with PL intensities. The validity of the results is
further supported by the consistency between the experimental
results and theoretical expectations for multiple ratios of
recombination rates: between the charged and neutral
biexciton state, the ratio of radiative rates of ∼1.32 (experi-
ment) versus 1.5 (theory), and the ratio of Auger
recombination rates of ∼0.96 versus 1.0; between biexciton
and single exciton, the ratio of radiative rates of ∼3.76 versus 4
and surface recombination rates of ∼3.40 versus 4. This
method can also be applied to other challenging problems, for
instance, the effect of plasmonic nanostructures on the
biexciton dynamics, confirmation of carrier multiplication,
and estimation of the generation efficiency of the biexciton.
Although when the excitation power is further increased, the
results obtained by this method will gradually deviate from the
correct values, by using multidetectors and considering the
contribution of multiexcitons, this method can be extended to
allow even higher-excitation conditions than the current
implementation and used to investigate the higher-order
exciton dynamics.
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