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Abstract: A brief review of Huang–Rhys theory and Albrechtos theory is provided, and their connection and applications are dis-
cussed. The former is a first order perturbative theory on optical transitions intended for applications such as absorption and
emission involving localized defect or impurity centers, emphasizing lattice relaxation or mixing of vibrational states due to elec-
tron–phonon coupling. The coupling strength is described by the Huang–Rhys factor. The latter theory is a second order perturb-
ative theory on optical transitions intended for Raman scattering, and can in-principle include electron–phonon coupling in both
electronic states and vibrational states. These two theories can potentially be connected through the common effect of lattice re-
laxation – non-orthonormal vibrational states associated with different electronic states. Because of this perceived connection,
the latter theory is often used to explain resonant Raman scattering of LO phonons in bulk semiconductors and further used to
describe the size dependence of electron–phonon coupling or Huang–Rhys factor in semiconductor nanostructures. Specifically,
the A term in Albrechtos theory is often invoked to describe the multi-LO-phonon resonant Raman peaks in both bulk and nano-
structured semiconductors in the literature, due to the misconception that a free-exciton could have a strong lattice relaxation.
Without lattice relaxation, the A term will give rise to Rayleigh or elastic scattering. Lattice relaxation is only significant for highly
localized defect or impurity states, and should be practically zero for either single particle states or free exciton states in a bulk
semiconductor or for confined states in a semiconductor nanostructure that is not extremely small.
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1.  Introduction

Electron–phonon coupling manifests in many ways in optic-
al properties, and thus in optical spectroscopy studies of semi-
conductors.  Two  commonly  observed  phenomena,  (1)  phon-
on side bands or replicas in luminescence or absorption spec-
tra,  and (2)  multiple  orders  of  longitudinal  optical  (LO)  phon-
on  Raman  lines,  are  both  related  to  electron–phonon  coup-
ling. The first phenomenon may occur in radiative recombina-
tion  associated  with  either  defect  or  impurity,  which  was  the
primary  subject  of  Huang  and  Rhys’  1950  paper[1],  or  band
edge  states  in  an  intrinsic  semiconductor[2].  The  second  phe-
nomenon  is  intrinsic  in  nature[2, 3],  but  sensitive  to  the  pres-
ence  of  defects  or  impurities[2].  Here  we  will  use  intrinsic  to
mean  a  semiconductor  free  of  defects  and  impurities.  Al-
though these phenomena might appear similar, their mechan-
isms  can  be  rather  different.  This  brief  review  intends  to  ex-
plain the differences in terms of underlying physics and to clari-
fy some confusion in the literature.

Huang–Rhys  factor S was  initially  introduced  to  describe
the electron–phonon coupling strength of a localized (defect)
center  because  of  lattice  relaxation,  where  lattice  relaxation
refers to the change in equilibrium atomic positions between
the  initial  and  final  state  involved  in  the  optical  transition[1].
For  a  defect  center,  the  atomic  configuration near  the  defect
can change substantially between the ground state and an ex-

cited state[4]. However, between two bulk states, one of the con-
duction band and the other of the valence band, lattice relaxa-
tion should be minimal, if any. Because the wave functions of
both states are extended, lattice relaxation would indicate one
sublattice  displacing  against  another,  and  thus  causing  a
change  in  the  lattice  constant.  Thus,  one  would  not  expect
that exciting a few electrons into the conduction band would in-
duce a change in interatomic bonding in a bulk semiconduct-
or. Therefore, we do not expect the specific lattice relaxation ef-
fect described in Huang–Rhys theory to manifest itself in the op-
tical transitions involving only bulk states.

This brief review will discuss two important topics of elec-
tron–phonon coupling that are highly relevant to optical spec-
troscopy studies of semiconductor materials and related nano-
structures:  (1)  the  difference  between  two  primary  ap-
proaches to treat the electron–phonon coupling, and their re-
spective  applications;  and  (2)  the  relationship  between  the
Huang–Rhys theory[1] and Albrecht's theory for Raman scatter-
ing[5], including the inappropriate though common practice of
using  Huang–Rhys  factor S to  describe  the  relative  intensity
between different LO phonon Raman peaks under resonant ex-
citation.

2.  Two basic approaches to treat
electron–phonon coupling in a semiconductor

Suppose  that  we  can  calculate  the  equilibrium  state  of  a
crystal  and  obtain  its  electronic  structure  with  atoms  at  their
equilibrium lattice sites, as well as the corresponding phonon
spectrum. The electrons and phonons are not two independ-
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ent  sub-systems.  Lattice  vibrations  can  perturb  electronic
states,  and  changes  in  electronic  states  may  also  affect  the
atomic  positions  in  the  crystal,  and  thus  the  vibration  spec-
trum. The latter effect is typically negligible unless a defect or
an impurity is involved. If the electron and phonon wave func-
tions are  and  for the independent electron and phonon
subsystems,  respectively,  the  electron–phonon  coupling
Hamiltonian HeL will change the wave functions to  and .
An  optical  transition  should  be  understood  as  occurring
between two states of  the coupled system denoted as 
within the Born-Oppenheimer approximation. Two frequently
adopted  approaches  to  treat  the  coupling  lead  to  two  dis-
tinctly  different  models[6, 7]:  one  is  referred  to  as  the  mo-
mentum conservation (MC) model and the other as the coordin-
ation configuration (CC) model. For the MC model, only the elec-
tronic part of the total wave function is perturbed by the coup-
ling.  That  is,  the  optical  transition  is  viewed  as  between  two
set  of  states  described  by  and ,  where i and f
stand for the initial and final electronic state, respectively, and
n and n' for different phonon states with the same atomic con-
figuration.  In  this  approach  the  electron–phonon  coupling
leads to mixing of electronic states. The reason it is called the
MC  model  is  that  in  an  indirect  bandgap  semiconductor,  the
coupling brings in a phonon in an indirect optical transition in
k space  helping  to  conserve  the  quasi-momentum.  The  pro-
cess can be understood as either introducing a first order per-
turbation in the electron wave function[8] or equivalently apply-
ing  a  second  order  perturbation  in  calculating  the  transition
rate[9].  The same general assumption, i.e., no change in phon-
on spectrum, is typically adopted in other more complex optic-
al  transitions,  such  as  multi-phonon  luminescence  of  free  ex-
citon[2] and most  Raman processes[10].  For  the CC model[1, 11],
within the commonly adopted Franck-Condon (F-C) approxima-
tion,  the  optical  transition  occurs  between  and ,
where n and n' refer to phonon states of different atomic config-
urations, which generally leads to multi-phonon spectral lines
due to lattice relaxation. The relative strength of the one-phon-
on  sidebands  to  the  zero-phonon  line  is  defined  as
Huang–Rhys  factor S.  Both  the  MC  and  CC  models  were  ap-
plied to interpret the phonon replicas of the impurity spectra
in  semiconductors[12].  It  has  been  shown  that  for  a  localized
state  the  contribution  of  the  MC  mechanism  is  usually  much
smaller than that of the CC mechanism[6].

3.  Huang–Rhys theory

3.1.  Huang–Rhys theory involving a highly localized

state

To facilitate the discussion, we reproduce the key results rel-
evant  to  the  optical  transition  from  a  paper  of  Prof.  K.
Huang[13] below, with some discussions added.

W
i

φi χn

The total Hamiltonian includes four terms: electronic por-
tion He,  phonon  portion HL,  electron–phonon  coupling  term
HeL,  and  electron-electromagnetic  wave  interaction  term HeR.
Assuming  as the eigenvalue of He with the corresponding

wave  function , ћω0 and  as  respectively  the  eigenvalue
and wave function of HL, we consider how to treat the two coup-
ling terms HeL and HeR.

Under  the  Born-Oppenheimer  or  adiabatic  approxima-

tion,  the  total  wave  function ψin(x, Q)  can  be  written  as  the
product  of  the  electron  wave  function ϕi(x,Q)  and  phonon
wave function χin(Q),
 

ψin (x,Q) = φi (x,Q) χin (Q) , (1)

where x is the electron coordinate, and Q represents the nor-
mal coordinates for the vibration modes. We attempt to separ-
ate the problem of solving ψin(x, Q) into two equations. The
electron wave function is the solution to the equation below:
  (He + HeL)φi (x,Q) = Wi (Q)φi (x,Q) . (2)

Because  of  the  presence  of  HeL,  the  electronic  eigenvalue
Wi(Q) is a function of Q. Wi(Q) also becomes an additional po-
tential term in the equation for the vibrational part:
  [HL +Wi (Q)]χin (Q) = Einχin (Q) , (3)

where Ein is the total eigenvalue. Under the harmonic approx-
imation, HL can be written as
 

HL = ∑
q



⎛⎜⎝−h̵ ∂

∂Q
q
+ ω

qQ

q
⎞⎟⎠ , (4)

where Qq represents a normal coordinate with a wave vector q
and frequency ωq.

Under  the  linear  coupling  approximation,  and  for  simpli-
city, only considering one vibration mode with a vibration fre-
quency ω0, we may write
 

HeL = u(x)Q. (5)

φi

The exact function form of u(x) depends on the type of elec-
tron–phonon coupling and the wave vector of the phonon
mode. With this approximation, the first order perturbation
solution of Eq. (2) (i.e., using the zeroth-order wave function

) yields
 

Wi (Q) = W
i + ω

ΔiQ, (6)

where
 

Δi = /ω
 ⟨φi (x) ∣u (x)∣φi (x)⟩ , (7)

which can be understood as the electron–phonon coupling in-
duced shift in the equilibrium position for the electronic state
ϕi. The solution of Eq, (3) is then
 

Ein = Wi + (n +


)h̵ω, (8)

where
 

Wi = W
i −



ω
Δ


i . (9)

We can understand Wi as the electronic energy that has been
lowered by the electron–phonon coupling. Strictly speaking, it
is the energy lowering of the coupled system, but because
within the approximations the phonon frequency remains the
same except for a shift in the equilibrium position, we may in-
terpret Wi as the electronic energy. Note that we do not expli-
citly solve Eq. (2) to get the electronic eigen-state.
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Δiq/√NIf  it  is  a  bulk-like  mode,  we should  change Δi to ,
and perform the  summation over  mode index q.  It  is  reason-
able to assume that incorporation of a few defects or impurit-
ies  will  not  cause significant changes in the bulk-like phonon
modes. However, for a local mode, its frequency is expected to
be more sensitive to the lattice configuration adjacent to the de-
fect or impurity.
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It  is  of  some interest  to  discuss  the  meaning of Δi.  Is  this
an experimentally measurable physical  parameter? How does
it  manifest in a self-consistent first-principles electronic struc-
ture calculation? We first note that Δi can be understood as a
static  lattice  displacement  near  a  defect  site  relative  to  a
chosen  reference  configuration Q0 (e.g.,  the  surrounding
atoms are at some idealistic atomic positions) as the result of
the electron–phonon coupling. Δi can in-principle be determ-
ined by comparing the idealistic atomic configuration Q0 with
the measured ones.  However,  it  is  impractical  to separate 

from the  in Wi, since one cannot force the lattice to be

in the Q0 configuration that is somewhat arbitrarily chosen any-
way. Starting from the reference configuration Q0,  it  is  an en-
ergy  optimization  process  that  leads  to  the  new  equilibrium
atomic configuration Qi = Q0 + Δi, which lowers the energy of
the system. A self-consistent first-principles calculation will nat-
urally result in the optimal configuration Qi. However, the pro-
cess of a self-consistent calculation is somewhat different from
the  process  described  above.  In  the  self-consistent  first-prin-
ciples calculation, the linear coupling approximation, Eq. (5) is
not needed. We can directly solve Eq. (2) by varying the atom-
ic  positions  to  find  the  atomic  configuration  that  minimizes
the total energy, and then solve the electronic states. The ob-
tained atomic configuration is also used to solve the vibration
spectrum typically within the harmonic approximation, which
yields the solutions of Eq. (4). As an example, in the case of an
oxygen vacancy in WO3

[4], in a self-consistent first-principles cal-
culation, the nearest neighboring W atoms are pulled closer to
the vacancy site from the defect-free positions for the neutral
vacancy  state ,  but  pushed  further  away  from  the  defect-

free positions for the ionized state .  This lattice relaxation
is  accompanied  by  a  large  change  in  the  energy  position  of
the  defect  level  between  the  two  charge  states.  We  further
note that the static lattice displacement described above is dif-
ferent  from  those  situations  where  the  dynamic  displace-
ments, i.e., atoms vibrating around their equilibrium positions,
are  responsible  for  the  electron–phonon  coupling  such  as  in
the case of  an indirect  transition in a  bulk semiconductor  (an
MC  process)  or  in  the  electron–phonon  scattering  processes
that affect electronic conductivity.

Let us now consider an optical transition in which the elec-
tron goes from an initial  state ϕi(x, Qi)  to a final  state ϕf(x, Qf).
From  Eq.  (9),  the  electronic  transition  energy  taking  into  ac-
count the lattice relaxation will be
 

Efi = Wf (Qf) −Wi (Qi) = W
f −W

i −


ω
 (Δf − Δi ) . (10)

This transition energy corresponds to the zero-phonon en-
ergy in the optical transition.

Perhaps the most important consequence of the lattice re-
laxation is that the initial and final state vibrational wave func-
tions  are  no  longer  orthonormal  to  each  other,  i.e.,

<χin(Qi)|χfn'(Qf)>  ≠ δn,n’.  Multiple  phonon  transitions  will
emerge from evaluating this overlapping integration that de-
pends  only  on  the  relative  lattice  displacement Δfi = Δf – Δi.
Huang–Rhys factor is defined as
 

Sfi =
/ω

Δ

fi

h̵ω
=
ωΔ


fi

h̵
, (11a)

or for N dispersion-less bulk modes,
 

Sfi =

N
∑

q

/ω
Δ


fiq

h̵ω
= 
N
∑

q
ω
h̵
Δfiq. (11b)

h̵ω

Δf − Δ

i

Sfi can be interpreted as the ratio of the ground state energy of
a harmonic oscillator with a displacement magnitude of Δfi to
the phonon energy . As it is apparent in both Eqs. (10) and
(11), only the relative displacement is relevant, although in
one case it is  and in the other case (Δf – Δi)2. If one ad-
opts Qi as the reference point, then the initial state ϕi(x, Qi) will
be consistent with that of the self-consistent calculation result
for one state of interest. It will also be consistent with the com-
mon practice of drawing a configuration coordinate diagram
using the bottom of one parabola as the energy reference. We
can rewrite the transition energy Eq. (10) as
 

Efi = Wf (Qi) −Wi (Qi) − 

ω
Δ


fi

= Wf (Qi) −Wi (Qi) −∑
q
Sfiqh̵ωq. (12)

It is now easier to relate the Huang–Rhys factor Eq. (11) to the
transition energy Eq. (12).

The transition rate between the initial  and final  state can
be written as
 

T (E) = π
h̵

∣ψfn′ (x,Q)∣HeR∣ψin (x,Q) >∣δ [E − (Efn′ − Ein)] .
(13)

Under Franck-Condon approximation (i.e., the atomic config-
uration  does  not  change,  when  an  electronic  transition
occurs),  the transition intensity is determined by the trans-
ition matrix element below:
 

Mfi(Q) = ⟨φf(x,Q)∣HeR∣φi(x,Q)⟩ ≈ M
fi, (14)

M
fi φi(x,Q) = φi φf(x,Q) =

φf

ψin = φi χn ψfn′ = φf χn′

where   is  evaluated  with   and  

, and thus, independent of Q. This approximation is consi-
stent with the first-order perturbation adopted when solving
Eq. (2) (i.e.,  using the zeroth-order wave function).  Equival-
ently, we consider the optical transition between the coupled
states approximated by  and , which is
the typical approximation made in the CC model.

To  evaluate  the  overlapping  integration  of  the  phonon
wave  function  <χin|χfn’>,  we  assume T =  0  K,  and  thus n =  0.
Assuming there are N normal modes,  the probability of emit-
ting p = n' – n phonons is the sum of all possible ways of select-
ing p normal modes and making each of them emit one phon-
on.  The final  result  for  the transition rate of  emitting p phon-
ons is 
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T(E = Efi − ph̵ω) = π
h̵
»»»»»»M

fi
»»»»»» Spp! e−s. (15)

E = Wfi−ph̵ω

In this simplistic situation (T = 0 and dispersion-less in phonon
frequency), optical transitions occur at energy 
with p = 0, 1, 2, …, with S being the intensity ratio of the one
phonon to zero-phonon, S/2 being the ratio of the two-phon-
on to one-phonon transition, and so on.

E = Ezp − ph̵ωs

W
f −W

i

W
f −W

i

Note that although S factors appear in Eq. (12), this trans-
ition  energy  is  in  fact  the  zero-phonon  transition  energy Ezp

that is the energy difference between the excited and ground
state  at  their  respective  equilibrium  positions,  taking  into  ac-
count  the  lattice  relaxation  effects  of  all  vibration  modes
(which  is  why  the  summation  is  included).  The  transition  en-
ergy  in  Eq.  (15)  with  the  participation  of  a  specific  phonon
mode ωs will  be  (p = 0,  1,  2,  etc.).  More expli-
citly, the contributions of all phonons together determine the
position  of  the  zero-phonon  transition  energy.  In  addition  to
that,  individual  phonon  modes  can  generate  more  phonon
side  bands  at  lower  energies.  One  might  attempt  to  take

 in Eq. (10) as the zero-phonon transition energy, as it
has been in some literatures. As mentioned above, this value is
just an arbitrary reference point of no physical significance in a
self-consistent calculation. A so-called “LO phonon-exciton com-
plex”  model[14] was  proposed  in  the  80’s  in  which 
was  interpreted  as  the  zero-phonon  transition  energy,  and
something  equivalent  to  Eq.  (10)  was  interpreted  as  the  en-
ergy of the “LO phonon-exciton complex”. Upon closer examina-
tion, this theory merely carried out an alternative derivation of
Huang–Rhys theory, but misinterpreted the result.

Wf (Qi) −Wi (Qi)
Ezp = Wf (Qf)−Wi (Qi)

Fig. 1 is a configuration coordinate model showing lattice
relaxation  parameters Δi, Δf,  and Δfi,  different  energy  levels,
and transition energies.  Under F-C approximation,  the excita-
tion  energy  required  for  the ϕi → ϕf transition  is

,  which  is  higher  than  the  zero-phonon  en-
ergy  given  by  Eq.  (10)  or  Eq.  (12).
However, zero-phonon transition is possible because of the fi-
nite  overlap  between  the  electronic  wave  functions ϕi(x, Qi)

and ϕf(x, Qf).  Note  that  because  the  transition  energy  calcu-
lated by a self-consistent method corresponds to the zero-phon-
on energy, for a defect structure with strong lattice relaxation,
the  excitation  energy  required  to  efficiently  excite  the  elec-
tron from the ground state to the excited state could be signific-
antly higher than the calculated transition energy. This consider-
ation is relevant to, for instance, an acceptor state with strong
lattice relaxation between the neutral (empty) and ionized (oc-
cupied) state, where thermal activation energy could be signific-
antly higher than the calculated transition energy (assuming it
is not limited by computational accuracy).

⟨φf ∣uq∣φj ⟩ φj
φf

φf = ∑
nk
ank”φ


nk ⟨φj ∣uq∣φf ⟩ =

∑
n
ank ⟨φj ∣uq∣φnk⟩ φj⟨φj ∣uq∣φf ⟩

In  calculating  the  transition  matrix  element Mfi(Q)  from
Eq.  (14),  we  have  neglected  the  potential  effect  of HeL in  the
electronic states or used the zeroth-order electronic wave func-
tions. However, if we treat HeL as a perturbation in the electron-
ic wave function, Mfi(Q) itself can lead to multiple phonon trans-
itions. Applying the first order perturbation of HeL to the elec-
tronic  wave  functions,  i.e.,  keeping  the  linear  terms  like

,  as  the intermediate  states  that  can couple  to

the final state , Mfi(Q0) calculated with such mixed electron-
ic  states  will  result  in  emitting  or  absorbing  one  phonon[8].
This is equivalent to treating HeL + HeR as a second-order per-
turbation in the electronic states.  If ϕf is  a  bulk state,  the mo-
mentum conservation is required between ϕj(kj) and ϕf(kf) and
only the phonon(s) with q equal or close to kf – kj can particip-
ate in the transition, which is the origin of the MC model. This
process  is  relevant  to  the  indirect  bandgap  transition  where
the  effects  on  the  phonon  wave  functions  are  typically  neg-
lected (i.e., <χin|χfn'> = δn,n’). Indeed, the lattice relaxation for a
bulk  state  is  practically  zero,  as  will  be  discussed  below.
However, if ϕf is an impurity state and expressed as a superposi-

tion  of  band  states ,  then 

. If the intermediate state  is a bulk state,

then  can potentially  be non-zero for  any phonon
mode with q = k – kj (because the impurity state does not have
a  well  defined kf),  thus,  resulting  in  a  spectrum  with  various
one-phonon bands. This extended MC model was proposed to
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Fig. 1. (Color online) Illustration of a configuration coordinate model. (a) Energy levels before and after taking into account the lattice relaxation.
(b) Transition energies in relaxed configuration coordinates.
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explain  the  phonon  sidebands  associated  with  the  deforma-
tion  potential  interaction  in  GaP:N[15],  but  it  was  pointed  out
later that this model cannot yield correct coupling strengths, al-
beit capable of reproducing the general shape of the phonon-
side band spectrum[6].

3.2.  Huang–Rhys factor for bulk states

It  was  mentioned  in  the  Introduction  that  lattice  relaxa-
tion  is  not  applicable  to  the  transition  between  two  bulk
states. Mathematically,  one can see that for a bulk state |nk >
the matrix element Δk(q) = <nk|u(q)|nk> ∝ δq,0; and for q = 0,
<nk|u(q)|nk>  ∝ < nk|nk>,  which  is  essentially  the  normaliza-
tion  condition  and  will  be  the  same  for  all  |nk>  states.  Thus,
the lattice relaxation is negligible for a Bloch state[16], and simil-
arly, the relative lattice relaxation between any two bulk states
has Δk1,k2(q) = Δk1(q) – Δk2(q) = 0. This conclusion is expected
to be valid also for typical nanostructures where the electron-
ic wave function of the quantum confined state can be approx-
imated  by  a  bulk  state  modulated  by  an  envelope  function
that is much larger than the unit cell size.

For  a  free  exciton,  the  lattice  relaxation  should  also  nor-
mally be zero. We may use a Slater determinant Ψ0 to describe
the  ground  state  of  the  system,  where  all k states  are  occu-
pied  by  the  valence  electrons.  For  simplicity,  we  consider  a
free  exciton  state  in  a  direct  band  gap  semiconductor  with
kex = 0. The wave function of the excitonic state Ψex can be ex-
pressed as a superposition of  excited states Ψvk,ck with coeffi-
cients Ak where  each Ψvk,ck is  a  Slater  determinant  with  one
valence band state |vk> being replaced by a conduction band
state |ck>, meaning that one electron has been excited to the
conduction band[9]:
 

Ψex = ∑
k
Akψvk,ck. (16)

HeL (qqq) = ∑n HeL (qqq)
Δex (qqq) = ⟨Ψex∣HeL∣Ψex⟩ − ⟨Ψ∣HeL∣Ψ⟩

For a large Wannier exciton, Ak  will be the Fourier compon-
ents of the exciton envelop function φ(r = re – rh). Including
the  electron–phonon  interaction  for  all  electrons  as

, the lattice relaxation can be calculated
by  evaluat ing  ,
which yields
 

Δex (qqq) = 

ω


∑
k
∣Ak∣ (⟨ck ∣uq∣ ck⟩ − ⟨vk ∣uq∣ vk⟩) . (17)

Δccckkk,vvvkkk (qqq) = 

ω


(⟨ck ∣uq∣ ck⟩ − ⟨vk ∣uq∣ vk⟩) = 

∑k ∣Ak∣ = 
Δex (qqq) ≈ Δccckkk,vvvkkk (qqq) ≈ 

As  ,  we  have

Δex(q) = 0, i.e., no lattice relaxation for a free exciton. Alternat-
ively, if we assume a large Wannier exciton with its wave func-
tion containing only k states near k0, we can move Δck,vk(q) to
the outside of  the summation and notice that  .
Then  .  Here  a  polaron  effect  has
been neglected. For a large Wannier exciton, the polaron ef-
fect is similar to the MC model to include the HeL induced mix-
ing or scattering of different k states. However, for a bound ex-
citon involving one highly localized particle, the lattice relaxa-
tion can be non-zero. For instance, if an electron is bound to a
highly localized impurity center, and the hole is attracted to
the bound electron, the lattice relaxation is given as[6]
 

Δex =


ω


(⟨φi ∣uq∣φi⟩ −∑
k
∣Ak∣ ⟨vk ∣uq∣ vk⟩) , (18)

⟨φi ∣uq∣φi⟩
where ϕi is the wave function of the impurity bound state, and
Ak the k component of the wave function of the hole bound
state. In this case,  is responsible for the appear-
ance  of  phonon  sidebands,  since  the  contribution  of  the
second term is practically zero. Limiting values of S factors for
LO phonons with deformation and polar interaction were es-
timated for a highly localized defect state in a few III–V and IV
semiconductors[16]. For instance, Sp ≈ 2.7 for GaAs and 2.1 for
GaP. Applying the model to CdSe and ZnTe, the estimated lim-
iting values will be Sp ≈ 7.3 and 4.9, respectively. These values
were computed with the defect wave function extending over
a range rT approximately 2.5 times the lattice constant. Since
Sp scales inversely with rT, the model suggests Sp → 0 as rT →
∞, indicating that there is again no lattice relaxation for a free
particle. Similarly, in the case of a bound exciton due to alloy
fluctuation in a semiconductor alloy, the lattice relaxation or S
factor associated with the deformation potential was found to
be inversely proportional to the number of unit cells occupied
by the electron and hole wave function[17].

In  the  literature,  there  are  some  theories  that  imply  or
claim  non-zero  lattice  relaxation  or  Huang–Rhys  factor  for  a
free or bulk exciton, either assuming Δck,vk(q) ≠ 0[18] or calculat-
ing Δ(q)  with  the  exciton  envelop  function  (for  the
electron–hole relative motion)[19, 20]. The model of Ref. [19] yiel-
ded Sp =  0.38–1.4  for  CdSe  and  0.008  for  GaAs  for  the  polar
(Fröhlich)  interaction  in  the  bulk  crystal.  The  theory  was  fur-
ther used to calculate the size dependence of Sp in nanostruc-
tures[19, 21].  The  other  model  calculated  the  lattice  relaxation,
and thus  the Huang Rhys  factor  for  a  bulk  exciton by  assum-
ing  a  highly  localized  hole  and  an  electron  in  a  hydrogentic
state described by the exciton envelop function[20]:
 

Δ = e

a (π )/ (ε−∞ − ε− )
ωLO


w ∫ w



x( + x)( + x) dx, (19)

w = (π)/a/a a awhere ,  is the exciton Bohr radius, and 
is  the  lattice  constant.  This  model  has  yielded  large
Huang–Rhys factors for polar interaction in various bulk ma-
terials, for instance Sp ≈ 4.5 for CdS and CdSe[22], and Sp = 3.2
for ZnTe[23]. A modified model was used to study the S factor
in quantum confined structures[24].  The primary problem of
these models[19, 20] appears to be that they use an inappropri-
ate charge density for the free or bulk exciton. These results
gave the wrong impression that the bulk material could have
a large S factor, which might have prompted the use of the so-
called A term in Albrecht’s theory to explain the appearance of
multiple LO phonon peaks in resonant Raman scattering in the
bulk material, and further in nanostructures. This issue will be
discussed further in Section 4.

3.3.  An example of applying Huang–Rhys theory

As example of an application of Huang–Rhys theory, Fig. 2
shows  a  PL  spectrum  for  radiative  recombination  of  an  ex-
citon  bound  to  an  isolated  nitrogen  impurity  in  a  lightly
doped GaP:N. This is one of the most well-studied impurity sys-
tems,  and  the  best  studied  isoelectronic  impurity  system  in
semiconductors.  This  is  a  case  of  relatively  weak  or  moder-
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ately strong electron–phonon coupling with S factors  smaller
than 1 for all phonon modes, where the LO(Γ) sideband is due
to the Fröhlich interaction while the X sideband as well as the
TA and LA sidebands are due to the deformation potential inter-
action. This has been used as an example to illustrate that the
CC and MC models might both be able to yield multiple phon-
on side bands, but only the CC model can give rise to S  factors
that  are quantitatively  consistent  with experimental  results[6].
A Koster-Slater on-site potential model (a likely oversimplified
theory)[25], was used to calculate the electronic bound state of
the  N  impurity.  Incidentally  or  non-incidentally,  it  was  found
that when the electron binding energy Ee was around 6 meV,
the calculations yielded respectively the correct exciton bind-
ing energy of the bound exciton[26] and the strengths of the ex-
citon–phonon coupling for both deformation and polar interac-
tion[6]. A density-functional theory based on a local density ap-
proximation (plus charge patching) yielded an Ee of 8 meV[27],
whereas it is known that Ee < 11 meV from the experimentally
measured difference between the free-exciton and bound-ex-
citon  transition  energy.  In  general,  a  quantitative  calculation
of S factors is traditionally non-trivial without making many ap-
proximations. It has recently become more feasible with the de-
velopment  of  a  more  sophisticated  theoretical  approach[28].
With the availability  of  clean and unambiguous experimental
data and a solid understanding of the underlying physics,  ex-
citon-phonon coupling in GaP:N may serve as  a  testbed for  a
new computational method or technique.

4.  Albrecht’s theory for Raman scattering

ψin = φi (x)χn(Q) ψfn′ = φf (x) χn′ (Q+
Δfi)

Huang–Rhys theory applies the first-order perturbation of
HeR to an electronic transition between two coupled states ap-
proximated  by  and 

. Albrecht’s theory instead applies the second order perturb-
ation of HeR to describe a Raman scattering process[5]. Besides
the added complexity of the second order perturbation, the lat-
ter theory in its general form involves both electronic and vibra-
tional  intermediate states,  and also includes HeL in  both elec-
tronic  and  vibrational  states.  Thus,  it  is  expected  to  be  much
more complex than Huang–Rhys theory.

We offer a concise summary of Albrecht’s theory below, at-
tempting  to  use  the  same  conventions  as  adopted  in
Huang–Rhys theory but using as closely as possible the same
symbols  used  in  Albrecht’s  original  paper.  For  the  transition
between  two  states  of  the  molecular  system  |m >  =  |ψm>  →
|n > = |ψn>, the polarizability αnm of Eq. (2) in the original pa-
per is reproduced below (for simplicity, we neglect the light po-
larization index): 

αnm = 
h̵
∑

r
( MnrMrm
ωrm − ω

+
MrmMnr
ωrn + ω

) , (20)

h̵ h̵where ω0 is the photon energy, ωrm is the energy difference
between the two states |r> and |m>, and Mrm = <r|HeR|m>. The
Raman scattering of interest is that a molecule at the initial
state m = gi (|g> being the electronic ground state and |i> the
vibrational state) is excited by the photon of frequency ω0 to
some intermediate state r = ev, and returns to the state n = gj
(i.e., the same electronic ground state |g> but a different vibra-
tional state |j>) after emitting j–i phonons of one particular
phonon mode. Since the second term in Eq. (20) is not practic-
ally useful for the problem of interest, it will be omitted there-
after. αnm can be rewritten using separated indexes for elec-
tronic and vibrational states:
 

αgj,gi =

h̵
∑

ev

Mgj,evMev,gi
ωev,gi − ω

. (21)

ψm = φg(x,Qi)×
χi(Qi),ψr = φe(x,Qi + Δei)χi(Qi + Δei)

Under  the  Born-Oppenheimer  approximation,  the  relev-
ant  molecular  states  can  be  expressed  as 

,  and ψn = ϕg(x,Qi)χj(Qi).
The difference between χi(Qi) and χj(Qi) is only in phonon occu-
pation  number,  but  there  can  be  lattice  relaxation  between
the ground state and intermediate states. The matrix element
is
 

Mrm = Mev,gi = ⟨χev ∣Me,g (Q)∣ χgi⟩ , (22)

with the electronic transition matrix element of
 

Me,g (Q) = ⟨φe ∣HeR∣φg⟩ . (23)
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Fig. 2. (Color online) Photoluminescence spectrum of the isolated nitrogen bound exciton in GaP:N (4.2 K, [N] = 1016 cm-3, A line at 2.317 eV)[6].
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Now keeping the HeL induced electronic state mixing to the
first order, we have
 

Me,g (Q) = M
e,g +∑

s
λe,s (Q)M

s,g, (24)

M
e,g

Me,g (Q)

where  is the matrix element under F-C approximation as
in the Huang–Rhys theory or CC model, λe,s(Q) terms are linear
in Q, similar to those electronic mixing terms in the MC model,
and the summation in the second term is over electronic state
index s (another summation over vibrational modes in λe,s(Q)
is not written out explicitly[5]). With  given by Eq. (24),
the total matrix element of Eq. (22) becomes

 

Mev,gi = M
e,g ⟨χev∣χgi⟩ +∑

s
M
s,g⟨χev∣λe,s (Q) »»»»»χgi⟩ . (25)

After substituting Eq. (25) into Eq. (21), the polarizability is giv-
en below with two terms (the C term in Albrecht’s paper asso-
ciated with the second term in Eq. (20) no longer exists):
 

αgi,gj = A + B, (26)

where
 

A = 
h̵
∑

ev

∣M
e,g∣ ⟨χgj∣χev⟩ ⟨χev∣χgi⟩

ωev,gi − ω
, (27)

 
 

B = 
h̵
∑

ev
∑

s

M
g,eM


s,g ⟨χgj ∣ χev⟩ ⟨χev ∣ λe,s∣ χgi⟩ +M

e,gM

s,e ⟨χev »»»»» χgi⟩ ⟨χgj »»»»» λs,g∣ χev⟩

ωev,gi − ω
. (28)

h̵ωev,gi ≫ ω

∣M
e,g∣ /(ωev,gi − ω)

∑v ⟨χgj∣ χev⟩ ⟨χev∣ χgi⟩ =⟨χgj∣ χgi⟩ = δj,i
∑v ∣χev⟩ ⟨χev = 

λg,s

h̵ωsh,ev

⟨χev∣ χgi⟩ = δvi

In the case of ,  corresponding to the below
bandgap  non-resonant  excitation,  one  can  assume  that

 and  are  constants,  and

,  after  applying  the
sum  rule .  The A term  cannot  yield  any
change  in  the  vibrational  state,  thus,  corresponding  to
Rayleigh  or  elastic  scattering.  The  term  in B involves  the
first-order matrix element of HeL induced electronic state mix-
ing and an energy denominator such as , which effect-
ively  makes  it  a  third-order  perturbation  theory.  Therefore, B
will  contribute to the transition of  emitting or  absorbing one
phonon, and after making , it is essentially the
same as the conventional Raman cross-section[10].

ωev,gi − ω → Under a near resonant condition, i.e.,  for
one electronic intermediate state ϕe, we can keep only one elec-
tronic  state  in  the  summation  in  the  A  term,  which  results  in
the A''' term in Albrecht’s paper:
 

A′′′ = 
h̵
∑

v

∣M
e,g∣ ⟨χgj»»»»» χev⟩ ⟨χev∣ χgi⟩
ωev,gi − ω + iγe

, (29)

where γe  is a damping constant for electronic state ϕe.  Now
the summation over the phonon modes can in-principle in-
clude those not contributing to the Raman scattering of in-
terest (e.g., there might be more than one branch of LO phon-
ons)[29], but normally people only consider the specific phon-
on mode that is measured. The corresponding B term under
resonance is referred to as B''',  which is not explicitly given
here.

»»»»»χgi⟩= ∣⟩ »»»»»χgj⟩= ∣n⟩ , ∣χev⟩ = ∣m⟩ h̵ωev,gi = Ee,i+
mh̵ωLO

Although the original theory was developed for Raman sc-
attering  of  molecules,  it  has  often  been  adopted  for  describ-
ing (resonant) Raman scattering in solids. For the later purpo-
se,  we  further  simplify A'''  to  a  familiar  form  that  is  typically
used in the literature to describe the resonant Raman scatter-
ing of LO phonons in bulk and nanoscale semiconductors.  By
letting , ,  and 

, we have the polarizability for emitting n phonons as
 

A = ∣M
e,g∣∑m

⟨n ∣m⟩ ⟨m∣ ⟩
Ee,i +mh̵ωLO − ω + iγe

. (30)

Albrecht stated that even under the resonance condition,
“it  is reasonable to expect that B'''  is  still  responsible for most

A′′′ = ∣M
e,g∣/(Ee,i +mh̵ωLO − ω + iγe) ⟨n ∣ ⟩∣n⟩ ∣⟩

of the Raman effect while A''' leads primarily to Rayleigh scatter-
ing”[5]. It was also pointed out by Cardona that “for solids and
large molecules, … the vibrational functions of initial and inter-
mediate states are orthonomal and no Raman scattering usu-
ally results from the A-terms”[3]. This is consistent with the dis-
cussions given in the previous section that there should be no
lattice relaxation between bulk states.  Therefore, the A'''  term
cannot yield the multi-phonon peaks of resonant Raman scatter-
ing in either bulk or typical nanostructured semiconductors, un-
less the nanocrystals are extremely small or the resonant state
is a highly localized defect/impurity state. Unfortunately, theor-
ies like Eq. (30) have often been used to describe the resonant
Raman phenomenon in both bulk and nanoscale semiconduct-
ors[20, 22–24, 30, 31],  which  is  ultimately  based  on  the  belief  that
there is considerable lattice relaxation, thus <m|0> ≠ 0 even in
the bulk. This is in turn based on the model of Eq. (19) that pre-
dicts  a  large  lattice  relaxation  for  a  bulk  exciton[20].  There  is
one  exception  indicating  that  Huang–Rhys  factor  was  in  fact
very small, on the order of 10–3, in CdSe nanocrystals, and that
the  experimental  observed  resonant  phenomenon  (although
not  quantitatively  the  relative  intensities  of  the nLO  peaks)
could be explained by a theory without resorting to lattice relax-
ation[32].  In  fact,  there  are  other  theories  in  the literature  that
have been developed for modeling the resonant Raman phe-
nomena in bulk materials,  such as one involving different ex-
citonic states as intermediate states, which may explain the in-
trinsic  nature  of  the  very  weal  1LO  peak  in  bulk  ZnTe  and
CdSe[2].  With this understanding, the relative enhancement of
the 1LO peak to the 2LO peak implies the degradation of mat-
erial  crystallinity  due  to  increase  in  bulk  or  surface  defects,
rather than a reduction in Huang–Rhys factor by using the A'''
based model. As an example, Fig. 3 compares two Raman spec-
tra of ZnTe excited with a 532 nm laser (close to its bandgap)
between a high quality single crystalline sample and a defect-
ive thin-film grown on a Si (211) substrate, where in the latter
the  1LO  Raman  peak  is  drastically  enhanced  relative  to  the
2LO peak (the I2LO/I1LO ratio changes from around 10 to 0.7)[33].
Therefore,  it  is  important  to  obtain  the  intrinsic  result,  which
might  not  be  trivial,  to  validate  a  theory.  A  secondary  issue
found in the literature is that, in Eq. (30), the index m for the in-
termediate  states  in  the  denominator  was  sometimes  repla-
ced by n for the final state[22, 23, 30], which incorrectly simplified
the  result  to ,
after  applying the sum rule.  Since both  and  are  of  the
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⟨n∣⟩ = δn,ground  state,  thus ,  one  would  have A'''  =  0  for
n ≠ 0.

When lattice relaxation does exist, such as when the inter-
mediate state is a highly localized state, the A term can in prin-
ciple induce multi-phonon transitions.  Resonant Raman stud-
ies  on isoelectronic  impurity  bound exciton states  of  isolated
N and NN pairs  in  GaP:N were conducted[34, 35],  but  no multi-
phonon  scattering  was  reported.  Under  incoming  resonance,
the 1LO Raman signal was much weaker than the PL signal of
the LO sideband, which makes it impractical to see the effect if
it is indeed present. However, it has been found that when the
excitation energy is  in  resonant  with  a  bulk  critical  point  in  a
semiconductor alloy or a semiconductor with heavily doped iso-
electronic  impurities,  2LO  and  associated  Raman  peaks  are
strongly  enhanced[14],  and  even  nLO  peaks  can  be
observed[36].  In  these  cases,  1LO  peak  tends  to  be  the
strongest.  The  effect  has  been  explained  as  disordering  in-
duced lattice relaxation[14, 17]. Even a formalism resembling Eq.
(30) was used[14], although the applicability was not well justi-
fied.

In short, A'''  is not appropriate to be used as a framework
to  explain  resonant  Raman  scattering  and  the  size  depend-
ence of Huang–Rhys factor.  Lattice relaxation can in-principle
be involved in resonant Raman scattering, but typically it is ex-
pected to  be rather  small  and involved in  a  very  subtle  man-
ner  mostly  through  the B'''  term  like  mechanisms.  In  reality,
the  changes  in  the  relative  intensity  of nLO  resonant  Raman
peaks are mostly  extrinsic  in  nature rather  than the quantum
confinement induced change in electron–phonon coupling.

5.  Summary

We  have  provided  a  concise  review  of  Huang–Rhys  the-
ory applied to optical transitions involving localized electronic
states in semiconductors and Albrecht’s theory for Raman scat-
tering  originally  developed  for  molecules  but  also  frequently
used in solids.

There are two commonly adopted approaches to dealing
with electron–phonon coupling in optical transitions. One ap-

proach  treats  the  coupling  in  the  vibrational  states,  as  in
Huang–Rhys theory,  which leads to static  lattice relaxation or
displacement  as  well  as  multi-phonon transitions  in  emission
and absorption spectra involving highly localized defect or im-
purity states where a Huang–Rhys factor S can be used to de-
scribe  the  coupling  strength.  The  other  approach  treats  the
coupling in the electronic states, such as in the theory of an in-
terband optical transition in an indirect bandgap semiconduct-
or  where  the  dynamic  lattice  displacement  is  relevant.  For
bulk single particle states as well as free exciton states, the lat-
tice  relaxation  effect  should  be  practically  zero.  The  connec-
tion  between  a  self-consistent  first-principles  calculation  and
Huang–Rhys model is also discussed.

Huang–Rhys theory is a first-order perturbative treatment
of  electron-electromagnetic  field  coupling,  and  it  is  intended
for applications in absorption and PL spectroscopy. Albrecht’s
theory is intended for Raman scattering, and in its most gener-
al form it is a second-order perturbative treatment of the elec-
tron-electromagnetic  field  coupling  that  may  take  into  ac-
count  both  the  electronic  and  vibration  intermediate  states
and include the electron–phonon coupling in both the electron-
ic and vibrational part. The A term in Albrecht’s theory is funda-
mentally related to Rayleigh scattering, although with lattice re-
laxation  it  could  contribute  to  multi-phonon  scattering.
However, in reality, if only bulk states are involved, the lattice re-
laxation  effect  should  be  zero.  Therefore,  it  normally  cannot
be used to describe the resonant Raman scattering of LO phon-
ons in bulk and nanostructured semiconductors. The B term, in-
volving the electron–phonon coupling induced mixing of elec-
tronic states, is similar to the conventional Raman scattering the-
ory. To a large extent, when applied to a solid state, the lattice
relaxation  effects  in  Albrecht’s  theory  can  be  neglected.
However, to properly explain the experimental results of reson-
ant  Raman  scattering,  some  excitonic  states  are  likely  re-
quired to be included as the intermediate electronic states.
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Fig. 3. (Color online) Resonant Raman spectra of ZnTe measured by a 532 nm laser at room temperature for one high quality single crystal
sample and a thin-film sample grown on a Si (211) substrate. Strong PL background of the single crystal sample has been removed.
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