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ABSTRACT

The dilute nitrogen alloys GaAsl_XNX and GaPI_XNX have recently become
technologically important for applications in high efficiency solar cells and vertical
cavity surface emitting diode lasers used for fiber optic communications. There exist
many inconsistencies between the results of various experimental techniques and
theoretical models used to probe the giant band gap lowering observed in. these systems.
It appears that these inconsistencies originate because GaAsl_XNX and GaPI_XNX should
perhaps not be viewed as an abnormal alloys but rather as a heavy isoelectronically doped
semiconductors. The similarity and dissimilarity between the two systems will be
discussed with respect to: (1) The perturbation of the host band structure caused by
nitrogen doping. (2) The evolution of nitrogen bound states with increasing nitrogen
doping (3) The dominant contributors to the band edge absorption, and (4) Whether there
exists a universal model that explains the anomalous behaviour of GaAsl_XNX and GaPI_
XNX. Key issues such as the relevance of various theoretical band structure calculations to
the experimentally measured parameters, and as to how exactly does one define the band
gap for these materials will also be examined. Finally, possible solutions for regularizing
the abnormal behavior of dilute N alloys will be discussed.

Keywords: isoelectronic impurity, impurity band, band gap bowing, co- doping

1. INTRODUCTION
Large band gap reductions, along with several other modifications to the band

structure, have been observed in heavily nitrogen doped GaAs and GaP for almost a
decadel'2. Two recent reviews3'4 have discussed the relationship of these phenomena to
the field of isoelectronic impurities in semiconductors which has been researched for over
thirty- years. For Nitrogen concentrations up to a few percent, GaAsl_XNX and GaPI,NX
have frequently been referred to as dilute nitride alloys. Since GaN has a much larger
band gap than either of the hosts, the observed large band gap reduction has been
portrayed as a "giant" bowing, using the terminology for describing conventional alloys.
However, if one notes that the band alignment for GaP /GaN or GaAs /GaN is type II with
the conduction band edge of the GaN lower than that of GaP by - 560 meV or GaAs by
200 meV, then the large band gap reduction is really not surprising3. Nitrogen is one of a
very distinct group of isoelectronic impurities in III -V semiconductors. Long before the
observation of the large band gap reductions it was known that the impurity states
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associated with an isolated nitrogen and various nitrogen pairs have progressively lower
energy levels (see Fig. 1) in GaP5 and GaAs6'7. In fact, this trend already hinted at type II
band alignments. If one considers the bowing for each individual band edge instead of the
entire band gap, one will find the bowing coefficient to be much smaller than that given
in the literature for the band gap of GaAsl_xNX and GaPI_XNX. However, the microscopic
origin for the band gap reduction, i.e., its relationship with the host band structure or the
nitrogen impurity states, has been an intensively debated issue in recent years. A
phenomenological model, namely the so- called "band anti -crossing" model, suggests that
the primary effect of nitrogen dopin is to cause a repulsion between the isolated nitrogen
level and the conduction band edge '9, ignoring the fact that the isolated nitrogen level is
above the conduction band edge in GaAs but below the conduction band edge in GaP.
Several attempts have been made to shed light on this problem using band structure
calculations'° -'3 and the following generic argument proposed for explaining the large
band gap reductions: nitrogen incorporation breaks the lattice symmetry and causes the
bulk states at the Brillouin zone boundaries (e.g., X and L point) to fold to the IT point.
Consequently, the repulsion between the folded states and the state at the F point gives
rise to the band gap reduction. Such an argument implies that any impurity incorporation
should result in a band gap reduction, which is obviously untrue. As has been discussed
in Ref. [3], an apparent reason for the large band gap reduction is simply the large type II
band offset, but a more fundamental reason is that the 2s valence atomic level of the N
atom is much lower than that of As 4s or P 3s. Nevertheless, all these band structure
calculations were able to yield a band gap reduction, although the values obtained have a
considerable scatter. According to these calculations, the band edge state is always bulk-

or more simply, a lowest bulk -like state is defined as the band edge'2'13 Another
suggested mechanism for the band gap reduction is based on the formation of an impurity
band from nitrogen bound states'4'15 In GaPI_XNX, all existing experimental data seem to
indicate the weak role of any perturbed host states in the band edge absorption5,16-'8 and
instead point to the formation of an impurity band from various nitrogen bound exciton
states'5'18 However, recent theoretical calculations'2'13 claim that the nitrogen impurity
states can not interact sufficiently so as to broaden and form an impurity band, and that
the band gap reduction is due to the host state "plunging down" as a result of nitrogen
perturbation. In GaAsXNI_X, nitrogen induced bound states have also been found to
broaden and turn into a continuous spectrum19'2o However, it has not been clear as to
how the nitrogen bound states and the bulk -like states compete with each other, and
which of them is the dominant contributor to the band edge absorption. This will be a
major issue that is to be addressed.

Another issue which has rarely been addressed for these so- called dilute nitride
alloys is the relevant meaning of a measured bandstructure parameter. Such a parameter
can be, for instance, the band gap and the effective mass both of which are well- defined
for an ideal crystal and known to be meaningful for conventional alloys. Experimentally,
the band gap of GaAsi_XN, and GaPI_XNX has been derived in many different ways:
photoluminescence (PL), absorption or PL excitation spectroscopy (PLE), and derivative
spectroscopy techniques which include electro- or photo- reflectance or absorption. From
absorption spectra, one can fit the absorption near the "band edge" to the lineshape
function for free carrier absorption, i.e., (E - Eg)° with n = '/2 for the direct transition and
n = 2 for the indirect transition. Ambiguity in the fitting procedure has led to
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Figure 1: Nitrogen induced trap levels in GaAs and GaP.

160

120

80

40

o

-40

-80

-120

contradictory conclusions4 of the same material being indirect according to one study and
direct according to another study. A more fundamental concern is that the inter -band
transition in an intrinsic semiconductor should always be excitonic, even if
inhomogeneous broadening smears out the measured excitonic feature in some cases.
However, depending on whether one takes the excitonic peak (if any) as the band gap or
uses the above mentioned fitting procedure, one may obtain a significantly different band
gap for a material like GaAsl_XNX which frequently exhibits a rather slow rising slope in
its absorption curve'. In the case of GaPI_XNX, since the band edge absorption originates
from nitrogen bound states, it is not at all clear what kind of lineshape function can be
justifiably used15. Regarding the various derivative spectroscopies which are commonly
believed to be more accurate than the linear spectroscopies, the band gap can be
determined with much less ambiguity (provided a proper lineshape function is used for
fitting the experimental curve). However, the physical process that results in the
measured derivative lineshape is complex for these strongly perturbed semiconductors. It
is also unclear how well the band gaps derived from using these somewhat different
criteria agree with one another.

To add to the confusion many attempts have been made for quantitative comparisons
between experimental data and theoretical results. In many cases, it was not at all clear
what exactly was being compared, although excellent but likely fortuitous agreements
between experimental and theoretical results have been claimed13. In this review a
comprehensive view of the so- called GaAsl_XNX and GaPI_XNX alloys will be presented.
We will (1) examine differences in the band gap measured by different techniques or
using different criteria; (2) investigate how nitrogen doping affects the host band
structure and the band edge excitonic absorption; (3) illustrate the evolution of nitrogen
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bound states on increasing nitrogen doping level; and (4) discuss the relevance of
comparisons between the experimental data and theoretical modeling.

2. EXPERIMENTS
GaAsl-xNx samples discussed below were grown by low pressure metal- organic

chemical vapor deposition (MOCVD) on semi -insulating GaAs substrates. A 50 nm AlAs
layer was inserted in between for lifting off the epilayer by chemical etching. The
nominal epilayer thickness was 1 gm. Transmission was measured on a film that was
either van der Waals bonded to a cover glass or free standing, i.e., glued at its edge to a
thin metal wire. The film on glass was found to be slightly strained at low temperature,
but the "wire mounted" film remained strain -free in the area away from the wire. GaPI_
xNx samples were grown by MBE on GaP substrates, as described in Ref. [15]. Some
GaPI_XNx samples were thinned down to - 50 gm by mechanical polishing for the
transmission measurement. Transmission measurements were performed using a tungsten
lamp, focused and spatially filtered to have a 50 -gm spot size. 1.5 K linear absorption
spectra were measured using a system with a ISA 270 spectrometer and a CCD detector.
Differential absorption spectra were measured using a system with a Triax 320
spectrometer and a Si- detector. A 405 nm diode laser was used as the modulation source.
Nitrogen compositions were determined by either SIMS (for x < 0.1 %) or x -ray
measurements.
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Figure 2. Linear (right) and differential (left) absorption spectra of GaAsi-xNx, measured at 300 K.
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3. RESULTS

3.1 New "Band gap" of GaAsi. NX
Fig. 2 shows a comparison of the linear and differential absorption spectra for GaAsl_

,,Nx with x = 0, 0.2 % and 2.2 %. The two samples with x = 0 or 0.2 % were measured on
cover glass, and the 2.2 % sample was measured on the substrate. For the x = 0 sample,
the peak of the tT /T signal is shown to be very close to the excitonic absorption peak.
However, the excitonic absorption peak smears out for the other two nitrogen -doped
samples. Obviously, the main peak of the AT /T signal does not occur at the absorption
"threshold" which itself is not well- defined. Thus, Fig.2 illustrates the fact that using the
absorption "threshold" of the linear absorption spectrum may give rise to a rather
different band gap from that determined by the differential absorption. However, there
are no fundamental arguments that favor one result over the other. Fig.3 shows 1.5 K
absorption spectra for a set of relatively low nitrogen concentration samples with x < 0.5
%. These films were "wire mounted ", thus, being nearly strain free, whereas films on
cover glass show typically -2 meV splitting and shifts of the absorption peaks at this
temperature.
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Figure 3. Linear absorption spectra of GaAs1_xNx with low nitrogen concentrations, measured at 1.5
K. The absorption peak shifts monotonically with increasing nitrogen concentration.

The GaAs -like excitonic absorption peak is found to shift down in energy continuously
with increasing nitrogen concentration. A small band gap reduction of 1 meV has been
observed for a sample with nitrogen concentration as low as 1 x 1018 cm-3 or x = 0.0045
%. When x approaches 0.5 %, the absorption peak has broadened drastically, indicating
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Figure 4. Band gap reduction of GaAsl_xNx vs. N composition, determined by the excitonic
absorption peak at 1.5 K and electroreflectance lineshape fitting at 300 K.

a strong interaction between the bulk -like states and the nitrogen bound states associated
with nitrogen pairs or clusters. Fig. 4 summarizes results for the band gap reduction
measured by the excitonic absorption peak as a function of nitrogen composition for the
low x region, together with the results for the high x region obtained from electro-
reflectance measurements21. There is indeed a deviation between the band gaps
determined by the two techniques.

To better understand the character of the electronic states that contribute to the
absorption, for an x = 0.1 % sample, we have measured the PL spectra with excitation
energies above and below the GaAsl_XNX band gap19,20 Fig. 5 shows a PLE spectrum that
is reconstructed from the selective excitation PL spectra, together with a few such PL
spectra at representative excitation energies. As one can see, the PLE spectrum has a peak
at 1.475 eV which agrees within a few meV with the band gap determined by the
electroreflectance20. It is important to point out that with each excitation energy near but
below the band gap, we observed a sharp zero - phonon line at - 1 meV below the
excitation energy plus a TA phonon sideband and enhanced LOF and TOF resonant
Raman peaks, which indicates that these states behave like typical localized statesls
Apparently, these impurity -like states exist in a spectral range at least 100 meV below the
"band gap ". Thus, the existence of an impurity band is an indisputable fact, although the
impurity -like states may not be the dominant contributors to the absorption near the
"band gap ".
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Figure 5. (left) Selective excitation PL spectra and (right) PLE spectrum reconstructed from PL
intensities at the energy of NNB peak for a GaAsl_XNx sample with x = 0.1 %.

3.2 New "Band gap" of GaPI_xNx
For GaPI_XNx, early studies5'17 have shown that nitrogen doping indeed perturbs the

host band structure, making the forbidden indirect band gap transition Ax partially
allowed. However, the absorption at the direct band gap was found to be only = 1 /150 of
the A line (the isolated nitrogen state) absorption (only = 1/450 if the contribution of the
A line acoustic phonon sideband is subtracted)17. More recent PLE measurements for
nitrogen compositions up to 2 % showed absorption features near Ax as well as near the
direct gap energy, but no sign of any absorption feature at the L indirect gap energy18.
Thus, it is highly unlikely that in GaPI_xNX any perturbed bulk states could make
comparable contributions to that from the band edge absorption of the nitrogen bound
states. Fig. 6 shows PL spectra15 for a set of GaPI_xNx samples with x varying 0.004 % to
0.6 %. The spectrum of the most dilute sample shows the emission lines of nearly all the
nitrogen induced bound states in GaPI_xNx5. However, on increasing the nitrogen
concentration, the sharp lines due to nitrogen pairs at the higher energy side broaden and
quench sequentially in the order of increasing binding energy. Simultaneously, a broad
emission band appears at the lower energy side of the NNI line.

Selective excitation of PL is used to reveal the nature of the states that give rise to the
broad emission band, while absorption measurements are used to monitor the evolution
of the nitrogen pair states. The results are shown in Fig. 7. To the left, the PL spectra
obtained under selective excitation are found to always consist of a sharp zero phonon
line NN: together with various phonon sidebands, typical of the spectrum for a nitrogen
pair like NNI. This indicates that the states in the broad band are nothing but nitrogen
bound exciton states with different local environments. To the right, an absorption
spectrum shows that the peak positions of nitrogen pair states barely move with respect to
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Figure 6. PL spectra of GaP._xNx with different N compositions, measured at 10 K with
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xN,l sample with x = 0.70 %.
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Figure 8. Absorption spectra for GaP1_xNx with x = 0.70, 0. 90, 1.3, and 3.1 %, measured at 4 K
(except for the x = 0.70 % at 1.5 K). The curves are shifted for clarity.

the dilute limit, but they strongly broaden and merge with each other with higher N
doping. In fact, the absorption peak at NN1 very much resembles an excitonic absorption
peak in a conventional semiconductor. The results of Fig. 6 and Fig. 7 clearly reveal that
for x > 0.1 %, nitrogen bound states in GaP1_xNx rapidly broaden into a continuous
spectrum that is more than 300 meV wide. Fig.8 shows a set of absorption spectra for
different nitrogen compositions. It is clear that the positions of nitrogen bound states
remain more or less stationary until they all merge together at high nitrogen
concentrations, which unambiguously disproves the N - IT repulsion suggested by the
"band anti -crossing" model9.

4. DISCUSSIONS
4.1 Validity of the "band anti -crossing" model

The "band anti -crossing (BAC)" model suggests that the band gap reduction is
simply due to mutual repulsion between the isolated nitrogen state and the t conduction
band edge8'9, irrespective of the whether or not the isolated nitrogen level is higher or
lower than the conduction band edge and ignoring the possible role of bulk states
belonging to other valleys (namely the X and L valleys) or nitrogen pair states. Although
this model has been successfully used for fitting various experimental data, a number of
serious internal inconsistencies have been pointed out4, due to the over simplified nature
of this model. An equal but opposite shift of the band edge and the isolated nitrogen state
is expected by the BAC model. However, in GaAsi_xNx, this has been disproved
experimentally22'23 with one exception comprising data 24 from the authors of the model.
Also, there exists an inconsistency in the coupling matrix element, Vl,,lla, between what
was derived from the band gap pressure dependence and from the composition
dependence8'24. An extended version of this model with the k -space dispersion included is
also problematic25. First, it is conceptually wrong to view the nitrogen level as a
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of this model. An equal but opposite shift of the band edge and the isolated nitrogen state 
is expected by the BAC model. However, in GaAsi_xNx, this has been disproved 
experimentally22’23, with one exception comprising data 24 from the authors of the model. 
Also, there exists an inconsistency in the coupling matrix element, Vmn, between what 
was derived from the band gap pressure dependence and from the composition 
dependence8,24. An extended version of this model with the k-space dispersion included is 
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dispersionless band in k- space. Second, it is not clear for what range in k -space the k-
independent Vn,IN model is applicable. If one simply applies the model to the entire
Brillouin zone, one will obtain large splittings at both the L and X point (e.g., 540 meV at
the L point and 600 meV at the X point for x = I % with VmN = 0.27 eV), which is
exactly opposite to the suggestion that the BAC model would not yield a significant
splitting at the L point24. Although there is no reason to believe that the interaction
between the nitrogen state and any bulk states is uniform, it is unreasonable to believe
that the nitrogen state does not interact with the states with which it is in resonance or
with the nearby L point. For GaPI_XNX, the experimental data of Fig. 7 and Fig. 8 show
clearly that the A line is not repelled down by any bulk states, as suggested in Ref. [9].
Whether or not the f' band edge shifts up with increasing nitrogen doping9'18 is a different
issue deserving further investigation. In fact, in contradiction to their own claim that the
A line starts to be repelled down beginning at concentrations x > 0 % in Ref. [9], the
authors on a different occasion admitted24 that the A line energy was independent of
nitrogen concentration up to x 0.5 %.

4.2 Relevance of the comparison between experiment and theory.
The discussions above suggest that making quantitative comparisons between the

experimental data and the results of theoretical calculations is a delicate issue. Besides
the ambiguity in defining the band gap experimentally, it is not at all clear as to what is
the exact meaning of the calculated band gap. The observed large band gap reduction in
GaAsi_XX can be qualitatively understood by calculating the band structure of ordered
nitrogen arrays in GaAs10,11,26,27 However, not only do the calculated results vary
significantly from one method to the other, but also neither of them agrees quantitatively
with experimental results21. Obviously, a randomly nitrogen doped structure is expected
to differ electronically from the ordered structure15,19'21, which has been well
demonstrated even for a conventional alloy like GaXlnl_XP29. It has also been indicated by
recent calculations13 that the mere existence of nitrogen pair states could change the band
gap of the ordered structure. Attempts to model the random structure have to contend
with the issue of how does one define the band gap12,13'29 Ref.[30] defined the band gap
by averaging the lowest states (most likely being nitrogen localized states) over different
randomly generated configurations. Refs.[12,13] instead tried to identify the lowest bulk -
like state as the new band edge. Theoretically, one could choose different definitions for
the band gap, but the relevance of the calculated band gap to the experimentally
determined band gap would need further clarification. Thus, any claimed excellent
agreement with experimental data could only be fortuitous, without an actual calculation
of the specific quantity that was measured. For heavily nitrogen doped GaAs or GaP, the
band gap is not a well defined parameter as it is for undoped GaAs or GaP. However, for
a given nitrogen composition and an assumed random distribution, there will be a
statistically well defined absorption profile or a distribution of impurity -like and bulk -like
states. Any measurement (e.g., PL, absorption, differential absorption or electro-
reflectance) will be merely probing the collective behavior of these states which are
expected to respond to the different probing techniques distinctly. One could define, for
example, a band gap based on the technique used and a certain set of criteria. Thus, the
state at the "band edge" could be either impurity -like or bulk -like.
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4.3 Possibility of impurity band formation in GaAsl_XNX and GaPI_XNX.
Impurity band formation of the nitrogen bound states has been suggested as the

primary mechanism for the band gap reduction14'15 To refute this model, Refs.[12,13]
claimed that the nitrogen impurity states could not interact sufficiently so as to broaden
and form an impurity band. The experimental results, as summarized in the previous
sections, indicate that whether or not an impurity band is formed is really not the issue.
Rather, if one defines the band gap through, e.g., an absorption measurement, the key
issue becomes which of the impurity -like states or bulk -like states are the dominant
contributors to the absorption profile. Since GaAs is a direct gap but GaP is an indirect
gap semiconductor, the relative absorption strength of the impurity -like and bulk -like
states is expected to be very much different. The absorption cross section for a nitrogen

bound state in GaP is known31 to be
J

6d v = 9.5x10 -15 cm , and in GaAs this is

estimated to be J adV = 2.1x10 -13 cm (based on the experimental data of Ref. [7] and

following the detailed balance analysis of Ref. [32]). Fig. 9 shows estimated peak
absorption coefficients for the A line, Ax line, and NNI in GaPI_XNX, and for the XI line in
GaAs1_xNx, using their absorption cross sections obtained in the dilute limit and assuming
no broadening. Without broadening, the peak absorption of the A line in GaP could reach
98,000 cm-1 at x = 0.1 %, which is about the magnitude of the GaAs band edge excitonic
absorption33. Similarly, for the NNI state at x = 0.1 %, the peak absorption is estimated to
be - 1,100 cm' in GaP and 14,000 cm' in GaAs. Indeed, the absorption of the nitrogen
pair bound state in GaAs should be capable of reaching a value comparable
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Figure 9. Estimated peak absorption coefficients for A, Ax, and NNI transition in GaP:N, and for XI
in GaAs:N, using the absorption cross sections in the dilute limit and assuming no broadening.

to the GaAs band edge excitonic absorption at such a composition, if the state remained
bound and unbroadened. However, because of the fast decrease of the GaAs band edge
on increasing nitrogen doping, as shown in Fig. 3, a strong interaction between the
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shallow nitrogen pair bound states and the bulk -like states is expected. It is yet unclear
how the interaction transforms the GaAs band edge and the nitrogen pair bound state
from either the theoretical or experimental point of view. The recent theoretical
calculation12 "3 suggests that the nitrogen states would remain more or less stationary,
whereas the bulk band edge moved lower down surpassing them. Since the calculations
yielded12'13 an electron binding energy of - 100 meV for nitrogen pairs in GaAsl_XNX, it
would imply that for x > 0.5 %, the nitrogen pair states should remain bound according to
the data of Fig. 3, which is obviously contradictory to the experimental fact 19

To uderstand why the theoretical calculation1213 resulted in the conclusion that there
is no impurity band formation in GaAsN and GaPN, in contrast to the experimental
results, both the intrinsic limitations and the technical inadequacy of the theory need to be
examined. As summarized in Ref.[20], there are several channels for the nitrogen bound
states to interact. In addition to the difficult coupling considered in Refs.[12,13,14], i.e.,
the coupling of the highly localized bare electron bound states, there are two other
channels. One is through the excitonic states which are ultimately relevant in the
experimental measurement, but not taken into account in the theoretical modeling. The
other is the randomness- induced inhomogeneous broadening which can also effectively
give rise to a continuous spectrum. A serious effort has been made in Refs.[12,13] to
model the random structure by using a large supercell with up to 14,000 atoms. However,
such a size is still not adequate for realistically simulating the random structure in the
composition range of interest. For instance, for x = 0.1 %, the average pair separation is -
200 A, and a 200 A size supercell would have - 333,000 atoms. Even for x - 0.4 %, in
order to statistically obtain just 10 pairs of the same configuration appearing in a
supercell so as to observe their interaction, the supercell size should be - 160 A with -
180,000 atoms4. Thus, the supercell used in Refs.[12,13] was not sufficiently large
enough to generate an adequate number of nitrogen bound states with different local
configurations that would be capable of forming a quasi continuous spectrum. In
addition, the calculations12'13 yielded an electron binding energy of - 100 meV for
nitrogen pairs in GaAsN and - 30 meV for the isolated nitrogen in GaPI_xNx, whereas the
experimental values for both cases are known to be < 10 meV3'5'7'19 At least to some
extent, the insufficient accuracy for the impurity potential could affect the description of
the impurity -impurity and the impurity -host interaction.

5. FUTURE DIRECTIONS
5.1 Irregular Alloys

When two semiconductors AC and BC are mixed, this typically results in the
formation of a disordered alloy AxBI_xC if the physical properties of A and B do not
differ greatly from each other, and in that case the properties of the alloy change
smoothly from those of BC to those of AC as x is changed from 0 to 1. Such is the case
for Al Gal_xAs and InxGal_,As for example. The semiconductors AC and BC must of
course be miscible for a range of x which is mostly true when the properties of A and B
do not differ greatly. This contrasts with the n or p -type charge doping of
semiconductors, where the solubility of the donor or acceptor in the host is limited (as for
eg. GaAs:Si and GaAs:Zn). In some situations the differences between alloys and doped
semiconductors is not so clear. Heavy n -type doping of the order of 1019 (or 0.1% dopant
concentration) causes a nearly 200 meV band gap reduction in GaAs which results from
impurity band formation35, whereas, a 0.1% N doping in GaAs results in a band gap
reduction of less than 20 meV34. However, one does not speak of GaAs:Si as an alloy and
so the question arises as to why is GaAs:N being referred to as a GaAsl_xNx alloy? The
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200 A, and a 200 A size supercell would have - 333,000 atoms. Even for x - 0.4 %, in 
order to statistically obtain just 10 pairs of the same configuration appearing in a 
supercell so as to observe their interaction, the supercell size should be - 160 A with - 
180,000 atoms4. Thus, the supercell used in Refs.[12,13] was not sufficiently large 
enough to generate an adequate number of nitrogen bound states with different local 
configurations that would be capable of forming a quasi continuous spectrum. In 
addition, the calculations12,13 yielded an electron binding energy of - 100 meV for 
nitrogen pairs in GaAsN and ~ 30 meV for the isolated nitrogen in GaPi_xNx, whereas the 
experimental values for both cases are known to be < 10 meV3,5,7,19. At least to some 
extent, the insufficient accuracy for the impurity potential could affect the description of 
the impurity-impurity and the impurity-host interaction.

5. FUTURE DIRECTIONS

5.1 Irregular Alloys
When two semiconductors AC and BC are mixed, this typically results in the 

formation of a disordered alloy AxBi_xC if the physical properties of A and B do not 
differ greatly from each other, and in that case the properties of the alloy change 
smoothly from those of BC to those of AC as x is changed from 0 to 1. Such is the case 
for AlxGai_xAs and InxGai_xAs for example. The semiconductors AC and BC must of 
course be miscible for a range of x which is mostly true when the properties of A and B 
do not differ greatly. This contrasts with the n or p-type charge doping of 
semiconductors, where the solubility of the donor or acceptor in the host is limited (as for 
eg. GaAs:Si and GaAs:Zn). In some situations the differences between alloys and doped 
semiconductors is not so clear. Heavy n-type doping of the order of 1019 (or 0.1% dopant 
concentration) causes a nearly 200 meV band gap reduction in GaAs which results from 
impurity band formation35, whereas, a 0.1% N doping in GaAs results in a band gap 
reduction of less than 20 meV34. However, one does not speak of GaAs:Si as an alloy and 
so the question arises as to why is GaAs:N being referred to as a GaAsi_xNx alloy? The
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reason for this is that N is an isoelectronic impurity in III -V alloys and thus does not
result in charge doping. There are two types of isoelectronic impurities: those that do not
give rise to bound states (such as GaAs:Al or GaAs:In) and those that do give rise to
bound states in the host. If the isoelectronic impurity generates bound states located in the
band gap (either through isolated centers or pairs) such as is the case for GaAs:N and
GaP:N, then with heavy doping the impurity levels associated with these bound states
evolve into impurity bands that broaden and merge with the conduction band edge. The
formation of an impurity band in heavily n or p -type doped semiconductors has been well
studied together with its associated Mott metal -insulator transition36. Although the
formation of impurity bands in heavily isoelectronically doped alloys like GaAs:N and
GaP:N is relatively new, the phenomenon was actually observed in the CdSI,Te, system
for concentrations x > 10-4 almost thirty five years ago37. More insight into the common
physical relationships between alloys, heavily charge doped semiconductors and heavily
isoelectronically doped semiconductors is provided by a scaling rule recently observed by
Zhang et aí21. As shown in Fig. 10, the band gap reduction in a doped semiconductor is
observed to follow a scaling rule:

8E8(x) = (3x" (I)
where x is the mole fraction of the dopant. For alloys like InGa1_XAs, the scaling
exponent a is very close to 1. For heavily doped p -type semiconductors a = 1/3. The
physics underlying the X113 scaling rule is simply that the bandwidth of the impurity band
or the band gap reduction is proportional to the electron -electron interaction, and this
interaction is proportional to the average impurity separation. For isoelectronically doped
GaAs:N the scaling exponent a =- 2/3. The significance of the scaling exponent a being
close to 2/3 lies in that it confirms that the band gap reduction in heavily doped GaAs:N
is influenced by the formation of an impurity band associated with nitrogen pair bound
states. This is the primary reason for the irregular or abnormal behavior of these alloys as
will be discussed below.

5.2 Physics of isoelectronic traps
Because of the difference in valence between the dopant atom and the host atom that

it replaces, a non iso- electronic donor (acceptor) atom donates an electron (hole) to the
conduction (valence) band of the host crystal. The Coulomb potential of the resulting
ionized donor (acceptor) atom varies with distance as r 1 and generates a shallow donor
(acceptor) bound state. In contrast, for isoelectronic traps that are generated by
isoelectronic impurities such as N in GaAs or GaP, it is the difference in
electronegativity, size, and pseudopotential between the isoelectronic impurity and the
host atom it replaces that generates the trap state38. Such traps are characterized by a
potential that varies with distance much faster39 than r 1. The potential well created by the
isoelectronic trap is therefore much steeper than that created by the non- isoelectronic
donor (acceptor) and because of this an electron (hole) trapped around the isoelectronic
impurity atom is localized much more tightly around it. This spatial localization of
electrons (holes) by isoelectronic traps smears out the electronic eigenstates in k -space
causing them to be delocalized in the Brillouin zone. This proves advantageous in
allowing radiative transitions from these states to the band edges, thus enabling light
emission from indirect gap semiconductors like GaP. As discussed above, heavy N
doping in GaP and GaAs leads to impurity band formation, red -shifts in the
photoluminescence, and the giant band gap "bowing" phenomenon. However, the spatial
localization around the isoelectronic traps that generate the impurity bands is precisely
what disadvantageously affects the carrier mobility. This is the caveat with heavily
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isoelectronically doped semiconductors wherein the properties of the resulting alloy are
irregular. Evidently, the very success in incorporating large amounts of insoluble
isoelectronic dopants using non -equilibrium growth techniques is what leads to "irregular
alloy" behavior.

5.3 Physics of co- doping
It is of considerable practical importance to inquire whether there exists a solution to

the above problem. Having established the analogies between isoelectronic doping and
charge (n or p -type) doping, the simplest approach to providing an answer is to seek a
solution in a manner that parallels the analogous problem that exists for charge doping.
Here, it is well known that the solubility of an acceptor (donor) impurity can be
significantly increased by co- doping with a donor (acceptor). Using this approach, it has
been possible to increase the doping concentrations of As donors and Ga acceptors in Si
by almost 3 orders of magnitude40. Recent theoretical predictions indicated that co-
doping of ZnO with Ga donors and N acceptors would overcome the difficulties in
obtaining low resistivity p -type ZnO and this has been experimentally verified41'42. The
enhancement in solubility to a level well above the solubility limit was explained in terms
of the formation of ion -pairs between donors and acceptor ions and a consequent
reduction in the Madelung energy41. In GaN, Ploog and Brandt observed a significant
enhancement in the solubility of Be acceptors when co -doped with O donors, and that
this was accompanied by an improvement of one to two orders of magnitude in the
carrier mobilities despite the high doping concentrations43. The enhancement in mobility
resulted because pairs of oppositely charged long -range Coulomb scatterers combine to
behave as single short-range dipole scatterers. The above mentioned successes motivate
the use of a similar strategy for overcoming the limitations of isoelectronic doping.

5.4. Physics of isoelectronic co- doping
In GaP:N up to ten N pairs along with the isolated N center have been found to

generate trap states below the conduction band edges. Because of the short-range
impurity potential associated with the N isoelectronic traps, they can capture an electron
and result in the formation of a long -range screened Coulomb potential44. Thus the
Nitrogen isoelectronic traps in GaP behave as deep acceptors (levels near the conduction
band edge). In contrast to N, Bi is known to form isoelectronic trap levels just above the
valence band edge in GaP and the isolated Bi and Bi pair levels are known to behave as
hole traps45. Because these traps can capture holes and result in the formation of a long -
range Coulomb potential, the Bi isoelectronic traps behave as deep donors in GaP46.
Isoelectronic co- doping GaP with N and Bi should therefore yield advantages analogous
to those obtained in the charge co- doping of semiconductors. The solubility of the
isoelectronic dopants as well as the carrier mobility should be enhanced leading to a more
"regular alloy" like behavior with a concomitant improvement in photoluminescence
efficiency and carrier lifetime. In fact, evidence for the enhanced solubility of N and Bi
co- dopants in GaP already exists in the literature47. In contrast to GaP, the behavior of Bi
in GaAs has only rarely been studied and it is not known whether Bi generates hole traps
in GaAs. GaAs1_xBix has recently been grown and its band gap shows a large "bowing "48.
However, the observed temperature insensitivity of its band gap48 may have less to do
with the explanations relating to the semimetallic behavior of GaBi48'49 but more to do
with the fact that the valence band edge evolves out of a Bi impurity band, and that since
Bi traps behave as deep donors, the temperature variation of these levels does not follow
that of the band edge, which is a characteristic of deep levels. Thus one of the benefits
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Fig. 10. Comparison of band gap reduction as a function of impurity concentration for three typical
systems. Data for a) GaAs:Si (n -type doping) are from Ref. 35, b) GaAs:In (regular alloy) are from
J.P Laurenti et al, Phys. Rev. B 37, 4155 (1998), and c) GaAs:N are from Ref. 21.

of using isoelectronic co- doping for the active regions of lasers will be the inherent
temperature insensitivity of the devices. Bi should also prove beneficial in tuning the
valence band offset for holes in the multiple quantum well active regions of lasers
independently of the conduction band offset which is mainly determined by N in
GaAs :N:Bi.

The ability to enhance the solubility of N and Bi in GaAs should lead to stronger
overlap between the wavefunctions of neighboring N dopant atoms and similarly of
neighbouring Bi dopant atoms and thus to more regular transport properties as opposed to
hopping -like transport properties. The small size of N substituting for As (P) on the
group -V sub -lattice can be balanced by the large size of Bi substituting on the same sub -
lattice in GaAs (GaP), facilitating coherent epitaxial growth of the isoelectronically co-
doped alloy on GaAs (GaP) substrates. In the case of GaP, the direct band gap
characteristics of the heavily isoelectronically co -doped material combined with the
ability to grow GaP:N:Bi epitaxially on Si substrates would introduce exciting
possibilities for use of this material for fabricating photonic devices such as solar cells,
LED's and lasers. In fact, the VCSEL, solar cell and LED examples cited earlier would
all benefit greatly. N and Bi co- doping could be used beneficially in InP and InGaAs2 as
well. Finally, Isoelectronic co- doping could also be used advantageously in II -VI alloy
systems, like for example ZnSe which could be isoelectronically co -doped with O deep
acceptor like traps and Te deep donor like traps.
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valence band offset for holes in the multiple quantum well active regions of lasers 
independently of the conduction band offset which is mainly determined by N in 
GaAs:N:Bi.

The ability to enhance the solubility of N and Bi in GaAs should lead to stronger 
overlap between the wavefunctions of neighboring N dopant atoms and similarly of 
neighbouring Bi dopant atoms and thus to more regular transport properties as opposed to 
hopping-like transport properties. The small size of N substituting for As (P) on the 
group-V sub-lattice can be balanced by the large size of Bi substituting on the same sub­
lattice in GaAs (GaP), facilitating coherent epitaxial growth of the isoelectronically co­
doped alloy on GaAs (GaP) substrates. In the case of GaP, the direct band gap 
characteristics of the heavily isoelectronically co-doped material combined with the 
ability to grow GaP:N:Bi epitaxially on Si substrates would introduce exciting 
possibilities for use of this material for fabricating photonic devices such as solar cells, 
LED’s and lasers. In fact, the VCSEL, solar cell and LED examples cited earlier would 
all benefit greatly. N and Bi co-doping could be used beneficially in InP and InGaAs2 as 
well. Finally, Isoelectronic co-doping could also be used advantageously in II-VI alloy 
systems, like for example ZnSe which could be isoelectronically co-doped with O deep 
acceptor like traps and Te deep donor like traps.
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6. CONCLUSIONS
The band gap is not as clearly defined in the so- called dilute nitride alloys like

GaAsl_XNx and GaPI_XNX as it is in binary semiconductors or conventional alloys.
Depending on the criteria and techniques used, different band gaps may be derived. It is
found that the band gaps defined in various theoretical calculations do not clearly relate
to the experimentally determined band gap. Thus, any claimed excellent agreement
between experiment and theory is likely to be fortuitous.No sufficient attention has been
paid in the past to recognize the difference between the host materials GaAs and GaP,
one being direct gap and the other being indirect gap. Because of this major difference,
the role of nitrogen impurity states and their perturbation to the host are qualitatively
different in many aspects. Thus, it is unwise to attempt to find a universal model or
description for these two systems.

In both GaPI_XNx and GaAsl_xNx, nitrogen bound states quickly form an impurity
band on increasing the nitrogen doping level from the dilute limit The perturbed bulk
states in GaPI_xNX are found to be incapable of making a dominant contribution to the
band edge absorption. It is the absorption from nitrogen bound states of isolated centers,
pairs, triplets etc. that gives rise to the new band edge below the indirect band edge of the
host. Whether or not the bulk -like states actually plunge down into the band gap, as
predicted theoretically, is unclear and undetectable at this time. The perturbed bulk states
in GaAsl_xNx, however, remain as the dominant contributors to the band edge absorption.
A well- defined, but gradually broadened, GaAs -like band edge excitonic absorption peak
has been observed for nitrogen composition up to nearly 0.5 %. The interaction between
the bulk -like states and the nitrogen bound states transforms the band structure near the
new band edge into a mixture of localized and delocalized states. The incorporation of
nitrogen into GaAs and GaP generates a series of impurity -like states which co- exists
with perturbed bulk states in a wide spectral range. Their collective behavior responds to
different experimental measurements differently. Thus, arguments over which technique
is more direct or accurate than the other is not always meaningful, especially, given the
fact that one usually does not know the detailed mechanisms of the collective response
being measured.

The "irregular or abnormal alloy" behavior in GaAsl_xNx and GaPI_xNx has been
discussed and it has been argued that these materials are better described as heavily
doped semiconductors rather than as alloys. Isoelectronic co- doping has been proposed as
a method for obtaining "regular alloy" behavior in these systems where it leads to
enhancements in 1) the solubility of isoelectronic dopants, and 2) Carrier mobilities. The
arguments presented in this article indicate that the use of isoelectronic co- doping should
make it possible in several situations to overcome the limitations imposed by
semiconductor alloy constraints on the design of some technological important devices
such as such as solar cells, lasers and LED's. Use of the technique could expand the
repertoire of available choices for semiconductor compounds and alloys having band
gap /lattice constant paired values suited for epitaxial growth of device structures that
implement design principles closest to the ideal.
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