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A direct atomistic quantum-mechanical theory is used for a comprehensive investigation on the applicability
of a statistical theory based on cluster expansion to the electronic band structure of a semiconductor alloy with
variable degree of long-range order. This study reveals that the applicability of the statistical theory depends on
the modulation of the relevant wave function within the alloyed sublattice. This finding can be generalized
beyond the prototype system—CuPt-ordered Ga,In;_,P—to other alloys or other forms of long-range order and
thus establishes a framework for understanding the effect of ordering in semiconductor alloys and the limita-
tion of the cluster expansion approach for treating the electronic structure of alloys.
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I. INTRODUCTION

Spontaneous long-range ordering observed in many III-V
semiconductor alloys A;_B,C provides not only unique op-
portunities for tailoring the material properties of these al-
loys for specific applications! but also an experimental envi-
ronment for studying fundamental physical phenomena such
as Anderson localization.> Temporal localization has recently
been demonstrated in an effective three-dimensional (3D)
system of cold atoms? but a spontaneously ordered semicon-
ductor alloy can offer a realistic 3D system with tunable
degree of disorder.! It is thus of pivotal importance to under-
stand how basic material properties of a partially ordered
semiconductor alloy vary as functions of macroscopic pa-
rameters such as composition and order parameter.

Two diametrically different approaches have been used to
understand alloy systems that are either disordered or par-
tially ordered. One is a statistical approach that is often built
on cluster expansion (CE).* CE is widely used for describing
order-disorder transformation in alloys® and searching new
structures with targeted material properties.®” The other ap-
proach is a direct quantum-mechanical computation using an
atomistic theory. Besides obtaining quantitative results for
the material system of interest, this approach can also pro-
vide qualitative insights as well as ultimate tests of the sta-
tistical theory and the assumptions adopted. However, to re-
alistically model an alloy system, a very large structure is
typically needed to correctly emulate the alloy statistics,
which has prevented the direct atomistic calculation from
being feasible for most situations.

The statistical theories based on CE are typically used for
understanding ordering phenomena related to the change in
structure and internal energy in alloys® but the CE approach
has also been extended to treat the electronic and optical
properties in ordered semiconductor alloys.® This extension
could enhance greatly the usefulness of CE. However, the
applicability of CE to the electronic structure of the alloy has
not been rigorously and independently validated. In this
work, an atomistic theory is applied to perform a systematic
examination of the applicability and limitations of a general-
ized statistical model based on CE, using CuPt-ordered

1098-0121/2009/80(4)/045206(4)

045206-1

PACS number(s): 71.23.An, 64.60.Cn, 71.20.Nr

Ga,In,_P as a prototype alloy system. The results of the
atomistic theory provide a general understanding of the ap-
plicability of the statistical model to different alloy systems
and forms of ordering.

II. THEORIES AND METHODS

A CuPt-ordered Ga,In,_,P alloy can be defined as a (111)
monolayer superlattice Ga,,,»In_,_,nP/Ga,_,pln;_,,»P,
where 7 is the order parameter and has a maximum value
Tmax(®)=min[2x,2(1-x)]. Full ordering can be achieved
only at x=X,=0.5. Note that the structural invariance of the
mapping 7— —n requires that any material property must be
an even function of 7. Previously, it has been shown®? that a
physical property P(x, ) can be described by

P(x’ 7])=P(x70)+[P(XU’1)_P(X(T’O)]772’ (1)

when the property is determined primarily by lattice-
averaged pair interactions. Two important features make Eq.
(1) potentially very useful: it involves only one simple 7
term and its prefactor is x independent and can be easily
determined either experimentally or theoretically. However,
in practice, it is unclear for a given alloy system as to which
material property is expected to follow closely this elegant
scaling rule or when the three-body or higher-order interac-
tions are not negligible and when the statistical theory is
simply not applicable, i.e., the expansion is nonconvergent.
Although the elastic energy has been examined explicitly
using a valence-force field (VFF) method, and found to obey
nicely the 77 rule stated above,® the electronic bandgap
seems to deviate significantly from this scaling rule for
Ga,In,_,P even at x=0.5.10

First, using the CE approach,®° we develop a more gen-
eral theory for the dependence of a physical property P on x
and 7. In this theory, the P(x, %) is given by the sum over the
contributions of different classes of figures (e.g., all the fig-
ures of nearest-neighbor pairs belong to one class):%°

P(x,7) = 2, Op(x, ppplp(x, 7). (2)

where Og(x, ) is the number of figures of class F, pg is the
contribution of each figure of F, and II,(x, ) is the lattice-
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averaged atomic correlation function for the class F. Note
that Eq. (2) has adopted an important and a practical assump-
tion, that is, the contribution of any given type of figure is
always the same as pp, independent of its location in the
lattice. The atomic correlation function I14(x, %) is a product
of pseudospin S,(x, ), which equals 1 if the site i is occu-
pied by A or —1 if occupied by B. In this model, for a par-
tially CuPt-ordered alloy, the lattice-averaged S;(x,7) is
(2x—1)+ 5S;(X,,, p=1). Therefore, we have, for the single-
site contribution

ﬁsingle(xv 77) = (2x - 1), (3)

for the pair interaction

I, (x, ) = (2x = 1)* + 710 ,50(X, 1) (4)

and for the nearest-neighbor triangle figures

ILi(x, ) = 2x = 1)° + 77(2x = D[311,,5(X,, D], (5)

where I14(X,,1) is the atomic correlation of the fully or-
dered phase at X,. Because of the »— —% invariance, one
can infer that in general the expansion of Eq. (2) can be
expressed explicitly as

P(x,7) =P(x,0) + a (2x — D)]7* + Bl(2x - )]7*
+M2x-D]7°..., (6)

that is, P(x, %) is a series of 77, and the coefficients «, 3, and
y are functions of (2x—1). At x=X,=0.5, I14(0.5,7)

=71 x(X,, 1), thus, a[0], B[0], and y{0] are determined by
the averaged pair, four-body, and six-body atomic correlation
functions of the fully ordered structure at X, respectively. If
only pair interactions are important, then a=[P(X,,1)
—P(X,,0)] becomes x independent, and Eq. (6) reduces to
Eq. (1). With the inclusion of the triangle and/or higher-order
interactions, « should become x dependent. For this ap-
proach to be practically useful, the expansion of Eq. (6) has
to converge quickly. If the expansion turns out to be noncon-
vergent, as illustrated in an example below, the CE approach
is then inherently problematic.

Therefore, second, we test the convergence of Eq. (6), i.e.,
the importance of the high-order terms, using an accurate
atomistic theory. We calculate explicitly the order-parameter
dependences for a set of important properties: elastic energy,
bandgap, conduction and valence-band-edge shifts, crystal-
field splitting, and valence-band splitting for CuPt-ordered
Ga,In;_,P alloys with 0<x <1 and 0 < << 7,,,,.. We discuss
which of them follow a generalized 7? rule (possibly with an
x dependent coefficient), which of them follow an x indepen-
dent function of 77 (although not necessarily containing only
the lowest 77 term), and which of them simply cannot be
described by a convergent series of 7.

The electronic structure is calculated using an improved
empirical pseudopotential method'! with the use of a large
(27,648-atom) supercell, which ensures that the statistical
fluctuation for the energy levels of interest is within a few
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FIG. 1. (Color online) Elastic-energy change SE(x, 7) as a func-
tion of the square of order parameter # at different compositions of
X.

meV. The supercell is relaxed by minimizing the VFF elastic
energy.!> Other computational details are given in previous
publications.!%13

III. RESULTS AND DISCUSSIONS

Elastic energy. Figure 1 shows the 7 dependence of the
elastic energy for various x values. We find that this property
indeed obeys the scaling rule of Eq. (1) quite well.® By fitting
all the data points together to SE(x,7)=E(x, 7)—E(x,0)
=ar’, we get a=11.85 meV/atom, which agrees very well
with the directly calculated value of [E(X,,1)-E(X,,0)]
=11.91 meV/atom. The reason for the good agreement is
that the elastic energy is summed over the entire lattice and
is largely determined by the effective pair interactions.

Bandgap. This is perhaps the most important property for
semiconductor applications. The results for the bandgap re-
duction OE,(x, 7)=E,(x, 7)—E,(x,0) are shown in Fig. 2,
with E,(x,0) from Ref. 13. For x=0.5, we find that the 7
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FIG. 2. (Color online) Dependence of the bandgap reduction on
the square of order parameter 7. The inset shows the linear depen-
dence for x=0.75. The inset shows the linear plot for x=0.75.
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FIG. 3. (Color online) Shifts of the (a) conduction-band mini-
mum and (b) valence-band maximum as a function of the square of
order parameter 7. The inset shows the linear plot for x=0.75.

rule of Eq. (1) is inadequate to describe the variation of
bandgap as a function of 7. Nevertheless, SE,(x, 77) can be
fitted quite accurately with only the even-order terms up to
7°. However, for x=0.75, OB, surprisingly shows nearly a
linear 7 dependence (or |7| dependence), which implies that
Eq. (6) is nonconvergent because |7 is not an analytic func-
tion of 7. Because SE,(x, 7)= SEcpm(x, 7)+ SEypm(x, 7), in
the following we examine the individual variations in the
valence-band maximum (VBM) and conduction-band mini-
mum (CBM) states so as to reveal why the statistical theory
fails.

Conduction band. CuPt ordering leads to a symmetry re-
duction from T, to Csy and the folding of the L, state to
the zone center. The level repulsion between the I' and
folded L point states results in the lowering of the CBM.
Because the I'-L energy separation, and thus the level repul-
sion and wave-function localization, depends strongly on x,
one cannot expect that for the CBM, the shift SEcgp(x, 7)
=0Ecpm(0.5, ) as suggested by Eq. (1) will hold in a broad
composition range. Indeed, our numerical calculations at 7
=max  Show  that  SEcg(0.25,0.5)=-58 meV  and
SEcpm(0.75,0.5)==130 meV. The larger shift for the higher
x is related directly to the smaller I'-L separation. At x
=0.75, it is the near degeneracy of the I' and L states that
leads to the near linear 7 dependence of SE gy, which could
be understood qualitatively by applying a perturbation theory
to the two degenerate states. The 7 dependences are plotted
in Fig. 3(a) for different x values. Apparently Eq. (1) is in
general not applicable. More significantly, any linear depen-
dence will make Eq. (6) nonconverging.

It is important to emphasize that the statistical theory em-
ployed to obtain Eq. (6) or Eq. (1) assumes that the physical
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FIG. 4. (Color online) Charge distributions, represented by the
squared wave functions, of the conduction-band minimum and
valence-band maximum states along the ordering direction z for
CuPt-ordered GasInysP with #=0.5. The z axis is normalized to
the supercell period ¢ in the ordering direction.

property P(x, z7) is obtained by unbiased averaging over the
entire lattice with composition x, i.e., in Eq. (2) py is a con-
stant throughout the whole structure for a given figure F.
Therefore, if P(x, 7) is determined by a wave function local-
ized in domains with composition x’ #x, then this basic as-
sumption is invalid. If P(x, %) is indeed an analytical func-
tion of 77, one could in principle modify Eq. (2), for
instance, by introducing different weights to configurations
at different spatial locations with the weight determined by
the local electronic wave-function intensity. However, be-
cause the wave function cannot be obtained before hand,
such theory would not be practically very useful. For the
situation where P(x, ) is not an analytical function of 77,
even the above mentioned modification to Eq. (2) cannot
solve the nonconvergent difficulty of the CE method. For the
current alloy system, because the CBM state is primarily
derived from the cation states and ordering occurs in the
cation sublattice in this common-anion alloy, when the order-
ing induces strong I'-L coupling, the CBM wave function is
expected to be highly nonuniform along the ordering axis.
Figure 4 show the plan-averaged charge distribution of the
CBM for x=0.5 and 7=0.5 along the ordering direction. It
indeed has a strong modulation between the Ga-rich and In-
rich layers. This observation explains why the variation of
the CBM and thus the bandgap, does not follow the statisti-
cal theory when the I'-L coupling becomes strong. This type
of failure of the statistical theory is expected for other mate-
rials or other forms of ordering whenever wave-function lo-
calization on a specific alloying component occurs.

Valence band. For each individual x, the shift SEygp(x, 7)
of the VBM is found to be quite close to that of the 727
dependence, although the magnitude of the shift varies
slightly with x, as shown in Fig. 3(b). There are two possible
sources for the x dependence: (1) the contribution of the
triangle figures, Eq. (5), within the statistical theory and (2)
the variation in the level repulsion between the VBM and the
folded-in L, state, beyond the statistical theory. Because the
VBM is largely derived from the common-anion p states, the
effect of ordering is much weaker than that for the CBM
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FIG. 5. (Color online) Dependences of (a) crystal-field splitting
and (b) valence-band splitting on the square of order parameter 7.

state. This is manifested as a much smaller VBM shift and a
weaker modulation in the charge distribution of the VBM, as
shown in Fig. 4. Owing to the weak wave-function modula-
tion, the statistical theory is expected to be more accurate for
the VBM than for the CBM. In general, we find that the
statistical model is approximately valid for other valence-
band-derived properties. For instance, for two important
quantities originated from the ordering-induced symmetry
reduction, the crystal-field splitting Acg(x, 7) is found to fol-
low the 77 rule quite well, as shown in Fig. 5(a) and the
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valence-band splitting VBS(x, ) is found to depend only
weakly on x, as shown in Fig. 5(b), although not following
the 7” rule. Here the weak x dependence is due to the fact
that the x dependences of the individual states are largely
canceled out when evaluating the splitting. These observa-
tions are expected to be generally valid for common-anion
alloys with similar valence-band electronic structures.

IV. CONCLUSIONS

In summary, using an accurate atomistic theory, we have
provided an explicit test of the applicability of the cluster-
expansion theory when it is used to describe the electronic
properties of an ordered semiconductor alloy with varying
composition and order parameter. We find that the general-
ized statistical theory given by Eq. (6) is converged for those
electronic properties that are primarily associated with the
atomic states of the nonmodulated sublattice (such as the
valence-band states in the common-anion alloy), even
though the lowest-order formula given by Eq. (1) might in
general be inadequate. For any electronic property that is
primarily derived from the atomic states that are localized on
a particular alloyed sublattice (such as the CBM state in the
mixed-cation alloy), the statistical theory is shown to either
be nonconvergent or converge too slowly to be of practically
use. This work, therefore, provides a priori principle about
the applicability of the statistical approach based on the clus-
ter expansion method to the description of the electronic
structure of the semiconductor alloy.
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