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Motion of electrons in semiconductors under inhomogeneous strain
with application to laterally confined quantum wells
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A general treatment for finding the energy levels of electrons and holes in a system with slowly varying
inhomogeneous strain is given in the envelope-function approximation. An eight-band model is derived,
then block diagonalized to 2X2 and 6X6 for the conduction and valence bands, respectively. To first
order, i.e., in the so-called effective-mass approximation, the gradient of the strain tensor does not ap-
pear in the Hamiltonian; in the second-order approximation, both the strain variation of the effective
masses and the gradients of the strain tensor appear. The second-order effect can be significant within
the range of applicability of the theory when the strain is not sufficiently small and its variation is not
sufficiently slow. The general theory is first applied to the case of homogeneous strain (for the conduc-
tion band), which gives the strain dependence of the band structure, with comparison to previous work.
The theory is then applied to laterally strain-confined quantum wells, with the first-order approximation.
In the strain-confined system, the valence band is treated by four simultaneous envelope-function equa-
tions. Under certain conditions, they can be reduced to a pair of independent equations. Numerical re-
sults for the energy levels in a specific quantum wire are given. In the strain-confined system, the condi-
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tions under which the second-order effect could be significant are discussed.

I. INTRODUCTION

The effect of inhomogeneous strain in crystals was first
treated by Bardeen and Shockley:! a slowly varying inho-
mogeneous strain introduces a deformation potential
E | A(r) into the effective-mass equation for the envelope
function, where E,; is a deformation potential and
A(r)=g;,+¢€,,+¢€;; is the dilatation. They assumed that
the band was nondegenerate, that strain €;; was
sufficiently small, and that the variation of the strain with
position was sufficiently gradual so that terms related to
the position variation of the effective mass and the gra-
dient of the strain were negligible. This can be under-
stood as the first-order theory. A higher-order theory®>
which includes the neglected terms in Ref. 1 has been
developed for the acoustic-phonon-electron interaction
problem, where an inhomogeneous strain is created by
the phonons. Recently, inhomogeneous strain has been
used in semiconductor quantum wells to achieve lateral
confinement in order to create quantum wires and
dots.*”® 1In these structures, we have a degenerate
valence band, the magnitude of the strain is on the order
of 1%, and the strain may vary appreciably on the scale
of the envelope function. This problem is quite distinct
from the phonon-electron interaction, since the external
inhomogeneous strain in general breaks the translational
symmetry. To the best of my knowledge, there has not
been a rigorous treatment, on the order of the approxi-
mation for the phonon-electron problem, and allowing
for the degenerate band structure, of the effect of a gen-
eral slowly varying inhomogeneous strain on the elec-
tronic states. Here “slowly varying’’ means that the vari-
ation is negligible over a unit cell, but may be significant
on the scale of the envelope function. It is therefore
necessary to develop a refined theory, on the basis of
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Refs. 1-3, for strain-confined structures, which are
currently of particular interest, and also for other possi-
ble cases in general.

Slowly varying inhomogeneous strain has been treated
differently from Bardeen and Shockley by other au-
thors,>? who used a coordinate transformation method
also used by Pikus and Bir for the homogeneous strain
case.”® The same coordinate transformation method will
be used in this work.

Another important issue is to deal correctly with a de-
generate band under inhomogeneous strain. This has not
yet been done even in the first-order approximation. One
approach®®® is to find position-dependent band-edge
(k =0) states under piecewise homogeneous strain. This
is a zero-order theory, and is invalid since the diagonali-
zation procedure for homogeneous strain is not applica-
ble to the case of inhomogeneous strain, which mixes
states of different k with different behaviors under strain.
In practice, this procedure is valid for very slowly vary-
ing strain field (on a scale of mm) as in Ref. 9, but it is not
appropriate for strained-quantum-well structures* °
where quantum confinement is significant. The
envelope-function method needs to be generalized to the
case of degenerate bands under inhomogeneous strain, as
has been done for impurities with long-range potentials. '°

On the other hand, the theory for inhomogeneous
strain has been well developed® since Pikus and Bir’s
pioneering work,” and recently an eight-band model was
proposed.!! Phenomenologically, one might assume that
the k-p theory for homogeneous strain'' can be adapted
to the inhomogeneous case by changing k to —iV and ¢;;
to ;;(r), and thus obtaining a set of coupled differential
equations for the envelope functions. However, as we
shall see, this is inadequate when the strain varies appre-
ciably on the length scale of the envelope function.
Strain gradient terms have been included'? by making a
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symmetric replacement to the product of the strain ten-
sor component and the momentum operator in the theory
for homogeneous strain. While this ensures the Hermiti-
city of the Hamiltonian, the Hamiltonian obtained is not
always adequate, as will be discussed below.

Apart from the above considerations, two other
effects—normal and generalized piezoelectricity,!*—
might also need to be taken into account. Here “general-
ized piezoelectricity” refers to a macroscopic polarization
field proportional to the gradient of the strain. The nor-
mal piezoelectric effect appears only in crystals without
inversion symmetry, such as GaAs, which in fact is weak-
ly piezoelectric. This effect has been discussed for
strain-confined quantum wires and quantum dots. !* It is
not present in a quantum wire structure if the orientation
of the wire is along [100] ([001] being the growth direc-
tion of the quantum well). As for the generalized
piezoelectricity, it has been shown!> that the effect of the
macroscopic field can be separated into two parts: analyt-
ic and nonanalytic. The contribution of the analytic part
is equivalent to a change of deformation potential, and
thus is included in the measured deformation potential,
while that of the nonanalytic part is small.'* Thus, if one
ignores the contribution of the nonanalytic part, one need
not consider the generalized piezoelectric effect separate-
ly. The normal piezoelectric effect, on the other hand,
gives a potential V., that is independent of the band in-
dex,'* which means that it can be added in at the places
where the hydrostatic deformation potentials appear.

In Sec. II, a general treatment for slowly varying inho-
mogeneous strain in the envelope-function approximation
is given for semiconductors with degenerate or nearly de-
generate band structures. The problem is worked out in
the eight-band model, and block diagonalized to 2 X2
and 6X6 blocks by second-order perturbation theory.
Applications to the limiting case of homogeneous strain
are briefly discussed. In Sec. III, the theory is applied to
laterally confined quantum-well structures. The nearly
degenerate valence band and the nondegenerate conduc-
tion band are treated consistently to first order. Numeri-
cal results for a specific quantum wire structure are given.
The second-order effect is discussed, and is shown to con-
tribute significantly within the range of applicability of
this theory, although not in the specific quantum wire
structure considered in this work. Section IV is a sum-
mary of this work.

The symbolic calculation in this work was done on a
Mac 1I6I computer with the help of Theorist and Mathema-
tica.

II. THEORY

For an unstrained bulk crystal, the Hamiltonian for an
electron is®

2
. _fi )
HO 2m+V0+4m2c2(VV0)Xpa . (1)
For a strained crystal, the Hamiltonian will be
2
=P fi .
H, 2m+VE+ mzcz(VVs)Xpa . (2)
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For homogeneous or macroscopically extended inho-
mogeneous strains, the difference V, —V,, cannot be tak-
en directly as a perturbation, since in general it is not
small.® Assuming the strain tensor is symmetric, we may

make a nonlinear coordinate transformation:>!”

x'=x— [e(x)dx, (3)

where the integral is the strain-induced displacement. In
the coordinate system x’ all atoms are placed in their reg-
ular positions, as they are in an x coordinate system
without strain. Under this transformation, noting that
g;/(x)=g;(x') and O¢;; /3x; =d¢;; /3x, to first order in &,

p=[1—e(x)]p’, 4)
3

Vo (x)=Vo(x )+ SV (x e, (x') . (5)
ij

Transformations (4) and (5) have the same forms as those
for the homogeneous strain,® except that now e(x’) is po-
sition dependent. The validity of the potential expansion
is based on the criteria, usually adopted in the electron-
phonon interaction problem,? that the strain is small and
the lattice displacements vary slowly over the scale of the
unit cell, and that the nonanalytic long-range electrostat-
ic effect!® is negligible. These criteria ensure the locality
of the strain potential ¥V (x): that is, at a given point of
space the potential depends only on the strain tensor at
the same point.>!® Then the Hamiltonian H, in the x’
coordinate is

H (X')=Hy(x')+D,(x)+Dgo(x) (6)
where
H=2 ty Py xpo, ™
2m 4m?c?
3 pip; N
D£=’2je,~j T +Vy _lzj’(pisij)—ZZ’ (8)

—_ h S ’ ’
DESO_TZCZ llzj[su(v Vlj)+ VU(V elj)]

Xp'-o—[e(V'Vy)]Xp'-0o

—(V'Vy)X(ep)o )

H(x’') has the same form in the x’ coordinate as H(x) in
the x coordinate. Except for strain gradient terms, all the
other terms in D, or D have the same forms as for the
homogeneous strain. For a slowly varying strain,
€;VV;;>>V;;Ve,, so the gradient term is actually negli-
gible in D g5 and we need only consider the gradient
term in D,. The eigenvalue problem to be solved is now

H (x")¥(x')=EY¥(x’) . (10)

As pointed out in Refs. 2 and 3, the Hamiltonian in the
x' coordinate, (6), is non-Hermitian since the momentum
operator p’ is non-Hermitian. However, the non-
Hermiticity of the transformed Hamiltonian is only ap-
parent, and the transformation will not change the eigen-
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values. The Hermiticity is recovered by multiplying (10)
throughout by the Jacobian of the transformation,?’
which is first order in the strain is J(x')=1+A(x’) [here
A(x') is the dilatation]. Equation (10) then becomes

H(x"W(X)=E[1+Ax")]¥(X'), (11)
with
H(x")=Hy(x")+ A" )Hy(x")+D (x")+D4o(x) . (12)

F(x') is a Hermitian operator, and 1+A(x’) is a
positive-definite Hermitian operator, so the eigenvalues E
of Eq. (11) are real.

Since the strain varies slowly on the scale of the unit
cell, #.(x') can be solved by the envelope-function
method. ' The state W(x’) can be expanded as

=34,y (x), (13)
nk

where Y, =exp(ik-x')u,(x’), and u,(x') are band-edge
states at k =0 corresponding to the Hamiltonian H(x’),
which includes spin-orbit interaction. k should be under-
stood as a wave vector in x’ space. Equivalent to Eq.
(11), we have equations in k space:

#2k 2 #
+ —E | A +—k- Ak
E, T 2(K) mkEIP"’ (k)
+3(nk|H'|lq) A4/(q)=0, (14)
Lq
where E, are the energies of band-edge states,

In ) =Ixw? Pu=(u,lplul), and H'=A(H,—E)
+D.+Do. A linear k term due to spin-orbit interac-
tion in a noncentrosymmetric crystal is neglected'! in
(14). The situation is analogous to that for the long-range
impurity problem;!© however, there is a significant
difference in that whereas the matrix elements
(nk|H'|lq) are (approximately) diagonal in the band in-
dex for the impurity potential, they are not for the strain.
As has been done for the case of homogeneous strain, I
will work out this problem in the eight-band manifold
which includes two conduction bands and six valence
bands. In the eight-band k-p theory for unstrained crys-
tals, it is customary to decouple the eight-band manifold
from the other remote bands by the Lowdin perturbation,
and then to diagonalize the “renormalized” 8 X 8 matrix
exactly. In the case of homogeneous strain, the strain
effect on the coupling between the eight-band manifold
and the remote bands is normally ignored!! (except by
Aspnes and Cardona!®), while the strain effect within the
eight-band manifold is treated exactly. This approxima-
tion will also be used here for the inhomogeneous strain
case. For simplicity, effects due to the lack of inversion
symmetry will be ignored.

The matrix elements {nk|H’|/q) can be calculated
and organized as follows:

(nk|H'|lq)=(nk|Dy|lq) +{nk|D,|Iq)
+{nkl|Dsoliq) +(nk|D, llq) , (15)

where
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(nk|Doliq)= |E,+ L —E |A(k—q)8,,
2m
‘Lq
-3 |— —eyk—q)
ij
fq;
+2—"]le}j(k—q) 8, > (16)
(nk|D, |lq)—2a,,,e,j k—q), (17)
(nk|i)ESO|Iq>zzbnlsij(k_q) 5 (18)
ij
27iq; P}, Pl .
(nkfil)k.p|lq)=—2 E,-j(k_Q)‘f‘E";l‘E;j(k—Q)
ij
#q-P,
+ 27 A k—q), (19)
with
r’/l_<un _&ri—j+Vij u,> ’

by ={u,|(Dso ,J|u1 )

and ¢;;(k), su(k) and A(k) are the Fourier transforms of
the stram tensor g;;(x’), its gradient [p/e;;(x')], and the
dilatation A(x ), respectively. Do has been written in
the form 2,,(D o) i €;j, and again a linear k term in D 4o
has been dropped a,;; and b} can be calculated in the
eight-band model!! for the case of homogeneous strain,
and they are given in (A14) and (A15) of Appendix A.
Introducing abbreviations

h2k2
(nk[HO|lq)= E,{FW 8,,,8k’q s (20)
(nk|H |l )=£k-P 8, . fi <8,/<8 1)
kpltd m nl9k,q 10T 1 =08,l =8,
(nk|HQ% |1q) = hk-P,,,Sk,q for n<8,/>8, (22)

the total Hamiltonian corresponding to (14) is then
H, H0+Hkp—i-H°“t +D+Dy,p 5 (23)

where D=2+ D, +D,s0, and EA(x’) on the right-hand
side of the Eq. (11) has been included in #; (or D). Hy'%
is the only term which couples the eight-band manifold to
other remote bands, if the small coupling due to D,. p Des
and D4 is neglected. !!

To decouple the eight-band manifold from remote
bands, we make a unitary transformation W(x’)
=exp(iS)p(x'),!° and obtain the transformed eigenvalue
equation

H(x)p(x')=Ep(x'), (24)
where the effective Hamiltonian is given by

FH . =exp(—iS)F. exp(iS) , (25)
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and the transformed wave function is

n=8 8
d(x)= 3 C,k)x,(x)=T3 F,(x)u,(x), (26)

n=1k n=1

where F,(x') is the so-called envelope function defined by

F,(x')=3C,(k)exp(ik-x') . 27
k
The eigenvalue equation in k space is then
3 (nk|#.|1q)C,(Q)=EC,(k) . (28)
Iq
If S is defined by
i[Hy,S]=—Hyy (29)

then it can be shown ' that up to terms of second order in
S,

H.=Hy+HP, +Li[HY,S]+D+Dy, . (30)

The matrix elements of S are calculated to be

out)
nl k,q

l =
(nk|S|lq) 1 E —F,

(n=8,1>8). (31)

With these {(nk|S|lq), we can calculate the S-related
term in (30):

(nk|Li[HP%,S]Iq)
=1 2 (H(I){ult) nm out )ml
m>8

1 1
X + S - 32
E,—E, E—E, |*¢ 32

We want to convert equation (28) in k space to real
space in terms of the envelope functions, which can be
done by multiplying (28) by exp(ik-x’'), and summing
over k. We then have

H (X', V)HX)=EHxX'), 33)

where ¥ is a 8 X1 column vector with eight envelope
functions F;(x’'), #, is an 8 X8 matrix which can be ob-
tained from the eight-band model for the homogeneous
strain (A12) by making the replacements k— —iV’,
e—e(x'), E,—E,+(E,—E)A, H,—(1+A)H,,
J

1
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and g k; [in Dy, given by (Al8) in x coordinate]
—i [28 Vi+ ‘(V g;)], and adding a diagonal term
fz /m [V €,V ‘V 7€ V;18,. This effective Hamil-
toman is Hermitian. Thcn (33) gives an eight-band model
in the x’ coordinate system for the inhomogeneous strain.
It is more convenient to work in the x coordinate. Equa-
tion (33) is transformed back to the x coordinate as

H.(x,V)F(x)=EF(x), (33

where H,(x,V) is the same as the effective Hamiltonian
(A12) for the homogeneous strain with k— —iV,
e—¢e(x), except that ¢;k; in D, is changed to
—i[e;V; +3(Vig;)] ThlS shows that strain gradient
terms appear only in strain-induced interband coupling
“Dy.p-” F(x) is then the envelope function in the x coor-
dinate.

The effect of normal piezoelectricity can be included
simply by adding the piezoelectric potential V', (x) (Ref.
14) to the diagonal terms of H (x,V) on the left-hand
side of (33'); however, it will be omltted in the following
for simplicity.

In fact it is possible to decouple the conduction and
valence bands at the same time as the eight-band mani-
fold is decoupled from the remote bands. Let us define

H=H,, +§Dk.p , (34)
where Hy = +HgY,. The total Hamiltonian (23)
can be rewritten as

H.=H,+D+H, . (35)
Redefining S by

i[Hy,S1=—H,, (36)

then up to the terms of second order in S,
7{ =H,+D+}i[H,,S]+i[D,S]—H[D,S],S) . (37)
The matrix elements of S are calculated to be

(Hk ‘p n18k q+(nk|1)k p|lq)
En El

=0(n=I). (38)

(nk|S|lq)=

(n##1)

The last three terms in (37) can then be calculated:

1

(nkl%l[Hl,S]Uq):—;‘ Z(Hk-p)nm(Hk-p)ml

+ 2 [(Hk'p ),,m(nk|Dk.p|lq)

m=c,v

+{nk|Dy,Imq)(Hgp)m]

+
E,—E,

8.q

EI_Em

1 1

+
E,—E, E—E,

) (39)

where only the first sum includes the remote bands in order to give the correct effective-mass tensor, while coupling to
the remote bands due to the strain is ignored. We notice that this matrix divides into 2X2 (conduction band) and 6X 6

(valence-band) blocks. Similarly,

H,. k|D|1
(nkl|i[D,8]llq)= 3 (Hyp)um {mK| |q>+

(nk|DImq)(Hgp)m

, (40)

E,—E,,

m=c,v

EI —Em
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(Hy.p)um {mKkl|i[D,S]]1q) N (nk|i[D,S]Imq)(Hy.p)m

41
E,—E, E,—E “h

(nk|—X([D,S],9)lg)=1 3

m

Because 9 is block diagonal in the band index and Hy ., has no block-diagonal term, (40) is zero within the 2X2 and
6 X 6 blocks. Since (40) has only off-diagonal terms between the conduction and valence bands, its contribution is of the
order of 2 and is negligible. However, (41) has block-diagonal terms, and is important in describing the strain depen-
dence of the effective masses in a homogeneous strain, which will be discussed below. Including (20), (16), (17), (18),
(39), and (41), we have an accuracy that is quadratic in k and first order in €, and the 8 X8 matrix is divided into 2 X2
and 6 X6 blocks. In the 8 X8 form, the effective Hamiltonian is given by

H.=H+D"V+D?, (42)

where H is the unstrained Hamiltonian in the k-p perturbation given by (A22), with k replaced by —iV’; D 1 is given
by the matrix D in (A12) for the homogeneous strain with replacement e —¢(x’) plus A(x’)(E, —E) in diagonal terms.

D'? is a higher-order effect corresponding to the strain variation of the effective masses and strain gradient terms:

D' =Dy pHyp =Dy pHip it + HDi pHyp — DicpHp I+ L {Hy p Dy} — {HypDy.p} 1t

nl 2

+%[(5(1)ﬁi~p )n1+(5(1)ﬁ12(~p )ﬁl]+[ﬁk~p{ﬁk4p5(”} ]nl _(ﬁk~p5(l)ﬁk-p )nl

_ . 2 2
[ B D V)i + 3, | V.6, 9, = T9 6,9, |8, +AE, ~E)3,, @)
ij

where k in Hy ; is understood as —iV’, and H,_, is given
in (A12), “x” indicates the complex conjugate, and

o Hyhm o Do
(Hk-p)nm'_ (En_Em) > k-p)nm_m ’
with
2/5P), _,  HP)
(Dyp) =13, - g;Vit+ om (Vie;)

ij
—if AP,V
m

Dy can be obtained from D,.,, (A18), by replacing ¢k,
with —i(2¢;Vi+1Ve;;) plus A(x')H,.,. When Hy  is
in front of ,‘Dk.p or D' ), and when they are associated
within curly brackets { }, V' is to be understood as acting
on €. Only first derivatives of the strain tensor have been
kept in (43). Equation (42) contains only block-diagonal
terms in 2 X2 and 6 X 6 blocks.

Apart from the diagonal term A(x')(E, —E)8,, in D'V,
H+D" is analogous to the effective-mass approximation
in the long-range impurity problem, and it is a natural ex-
tension of the theory of Ref. 1 to the case of degenerate
bands. D'? in (42) is analogous to terms which appear in
the long-range impurity problem when we go beyond the

f

effective-mass approximation.'® The general expression
for D'* is quite complicated, but it can be calculated
from (43). To see how D' affects the electron states, we
consider the conduction band only. Since the effective
Hamiltonian (42) is block diagonalized, the 2 X2 block of
(42) describes eigenstates associated with the conduction
band. After being transformed back to the x coordinate,
the 2 X2 block is

H =H+D"+D?, (44)

where H and D'! are diagonal, and given by 4, in (A23)
with k— —iV, and a, in (A21) e—e(x), respectively.
D? is separated into two parts:

D®P=p»+D}, 45)

where D/? describes the effect of the strain variation of
the effective masses, and Dé” describes the effect of the
gradient terms. They are the following:

M _2PF [ 1 Lo vy +P(2) 2(a,—a’)
n=3 | VE 4R (20T E?
2 [1+—

b'P(Z) 1 3b’

3 |E? (E,+E,E,

[SZEi,-V?-tr(s)Vz ] —

M, O
(2)—
D, 0o M, |’ (46)
) Gy Gy 47)
Dg B -sz Gfl ’
where
2E,
a1+ —
3a )
ETEP tr(e)V
g s
> i V3E,
d'V3PG | 1, 34 S £.V,V (48)
—_— =t e;V;V:,
3 E; (E, +EE, i, (i) ’ ’
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1 2
P62, 1 [V, tr(e)]V L Po | Aa.—a) S W [V, tr(e)]V
= | — —_ . . D -Irl e .
2 {1+ Es
RLCH P | [33:(9,6,07,— SV, tr(e)]V
3 Egz (Eg+Es)Eg ; i€V 21, i WE)V;
+1/§ES 2E,
43P | 1 +—————2 ] S (Ve WV WA 19, tr(e) )V, = [V, tr(e)],
_ = €WV, —ia'— | —— 1E) V= Vyirie 1
3 Eg2 (Eg+Es)Eg L) 1=y J 3 Eg2 (Eg+Es)2
1+ Es
) ’P(z, 1 3b’
“le —E‘E—ms)—E‘g {[Vi(eg tey—2e33) ]V, — [ V(e +ey—2e53) ]V
V3E,
) 1+
L V3PE | 3d’
id 3 Eg—m [(V,1€53)V3—(V38,3)V,+(V33)V,—(Ve3)V, ], (49)
1+2ES
G—ar 22| 39 ) ([, 419, tr(e) IV [V, trle) [V, + V)]
2= T o o 2 1 TLVR)UE) V3= V3lrle 171V,
3 |E} (E,+E,)7
1+2E5
,P(z) 1 3b'
+bT Eg?_m {[Vi(e11F €33 2e) V3 —[V5(e) He33—2€,) ]V,
+i[V2(522+E33_2€“)]V3_i[V3(822+E33_2€11)]V2}
V3E,
> 2 1+
L 3P0 ] 19 (e ie) Vs~ [Vlegs—ie )V
=2 | =2 T r Lr 5 11€23 1€ 3) [V VolEx3TIE 1
3 E; (E, +E)E,
+i[(vl_iV2)512]IV3_i[V3512](V1_iVZ)}
Pi 1 E—E, _E~E V,+iV,) tr(e) V3= [ Vs tr(e) (V, +iV 0
3 |E,  E,+E, Egz (Eg+ES)2 {[(V +iVy)tr(e) ][V —[V;tr(e) (V,+iV,)] . (50)

Here tr(e) is the dilatation A(x), E, is the band gap with
spin-orbit coupling, E; is the spin-orbit splitting, P, is a
constant describing the conduction-band-valence-band
coupling, a, is the deformation potential for the conduc-
tion band, and a’, b’, and d’ are effective deformation po-
tentials related to the normally defined deformation po-
tentials a, b, and d for the valence band. The constants
Py, a,, a’, b’, and d' are defined in Appendix A. D/? is
real and diagonal, Dé” is complex and nondiagonal. D;”
in general will remove the spin degeneracy of the conduc-
tion band, due to coupling to the valence subbands which
have different spin-orbit shifts. Without the coupling to
the valence band, the spin quantum number m, would be
a good quantum number, and thus the degeneracy would
remain.

Note that even when we do not explicitly include p;¢;;
terms in the original Hamiltonian (8), gradient terms due
to the coupling to the valence band still appear in (49)
and (50). They originate from noncommutation of the
strain field with the momentum operators. The gradient
terms due to E¢70 would have not appeared if we had
mad a symmetric replacement!? to the homogeneous
strain result following Ref. 12. In general, the symmetric
replacement is adequate only for a subset of bands whose
strain coupling to others bands is negligible. For in-
stance, the eight-band model (33’) can be obtained from
the result for homogeneous strain, because strain-induced
coupling to the remote bands is ignored. It is inadequate
for the two-band model for the conduction band (44), be-
cause strain-induced coupling to the valence band is in-
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cluded.

Notice that M, +G,; and G, are Hermitian opera-
tors. Although each operator in D? is Hermitian, D'?’
is not Hermitian as a whole, i.e.,, G,;#G7,. This is due
to the hidden degeneracy of the electron bound states. In
fact, the structure of D% is similar to the matrix for the
spin-orbit term in (1) in a basis without spin-orbit cou-
pling. In spite of the removal of the spin degeneracy, the
bound states are still Kramers degenerate due to time-
reversal symmetry, and the Hermiticity can be recovered
after the degeneracy is properly considered, as is dis-
cussed in Appendix B. If spin-orbit splitting is
sufficiently small or the band gap sufficiently large, the re-
sult is much simpler, and (47) is approximately diagonal
and real.

To first order, i.e., in the so-called effective-mass ap-
proximation, '° we do not need to consider D'?. How-
ever, D>’ may be important when the strain is so large
that it significantly affects the effective mass. On the oth-
er hand, when the strain variation in position is so rapid
J

2
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(though not so rapid as to invalidate the basic assump-
tions of this calculation) that D/*) is comparable to D%,
the gradient terms in D'? are not negligible. This is the
situation when azk,~ 1, where aj is the radius of the en-
velope function and k is a typical wave vector in the
Fourier transform of the strain. Note that without D>,
D® is non-Hermitian except for the case of homogene-
ous strain. In narrow-band-gap semiconductors D% is
relatively more important, as in the impurity problem. 2

The results above for inhomogeneous strain can be
adapted to the impurity problem discussed in Ref. 20 by
keeping only terms associated with the deformation po-
tentials a. and a. One sets ¢;=¢;8;, a.=a, and
atr(e)=U(x), where U(x) is the impurity potential.
More discussion of the impurity problem is given in Ap-
pendix B.

For homogeneous strain, from (44) we have the strain
dependence of the conduction band up to terms quadratic
in k:

# P§ [ 2 1 2P; [ 2 1
E (g,k)=a, tr(e)+ |——+A'+— |+ ke — | ———— kik;
s 3 |E,  E,TE, 3 |E, "B +E |2k
J
g 2 2 |1+
i 2(06_0,)+ac i T 2+ 20 P | 33eski—tren?
- tr(e — =t g; ki —tr(e
3 E; (E,+E,) 3 |E}  (E,+E)E, [,.
2 1+‘/§E5
43P | 1 3 S ekik 51)
ey EjKiK;j »
3 E; (Eg+EDE, | 6%y "1
where k is the wave vector in x space.
For hydrostatic pressure with ¢;; =¢€9,;, (51) becomes
2
# 0| 2 1
E(e,k)= |——+A'"+— | —+—7 | |[k*+3
(&R o 3 |E,  E,+E, 4t
, |28, 4E,
2P§ [ 2 L, p 4T . 4787 g o 5
3 |E, E,+E, 0 E} (E, +E,)? '
The variation of the effective mass m_ with pressure is then given by
, |28 \ 4E, l
a,—a a —a—
mo_gy B2 U ? IR N PR PSP O ° + 24 5y
m, 3 | E, E, E,+E, E,+E, w

This result basically agrees with Ref. 19. The difference
is due to the inclusion of the contribution of the spin-
orbit interaction term Dgg in (53). (The absolute defor-
mation potentials of I'y and I'; are a —2E,/9 and
a +4E_ /9, respectively.) We notice that the pressure
variation of the effective mass depends, as it must, only
on the difference between the deformation potentials of
the conduction band and the valence bands, contrary to
Eq. (6) of Ref. 21. For GaAs at 0 K, we obtain

Imc(e)ZmC(O)[1+5.85><10_3 (kbar )| X|], where X is
the hydrostatic pressure in kbar. This result agrees well
with the experimental result of 6.15X 107> kbar ! at 4.2
K.?? The calculation in Ref. 19 gave 9.39X 10~ kbar !
at 300 K. Parameters used are E,=1.5192 eV,
E,=0.341 eV, E,=22.71 eV,” £=4.29X107*X,* and
a.,—(a—2E;/9)=—8.31 eV corresponding to
dE, /dX =—10.7 meV/kbar.?> While the lack of inver-
sion symmetry is not considered in the above calculation,
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it does not affect the result for the hydrostatic pressure,
as can be seen from (A 14).

III. APPLICATION
TO LATERALLY STRAIN-CONFINED
QUANTUM WELLS

Next, the application to laterally strain-confined quan-
tum wells, such as the quantum wire or dot structures
based on GaAs/Ga,_ Al _As quantum wells,*?° will be
considered. It is assumed that the quantum-well
confinement is along the z direction, and that the strain
modulation of the quantum-well potential is negligible.
In the effective-mass approximation, i.e., neglecting D,
and assuming large spin-obit splitting, we have a one-
band model for the conduction band and a four-band
model for the valence band:

2‘:: +a,3e;(x)+V,(2) [F=EF , (54)
F, F,
_ F, F,
[—H—D"V+V, (2)1] F, =E, F| (55)

where E, and E, are electron and hole levels related to
the band edges of the bulk conduction and valence bands,
V.(z) and V,(z) are the quantum-well confining poten-
tials for the electron and holes, H is the effective Hamil-
tonian for the 4 X4 block associated with the heavy and
light holes in (A22), and D'V is the 4X 4 block of D in
(A12). In (55), the sign of the energy has been inverted.

In general, € is a function of x, y, and z. If in (54) and
(55) we had to treat the quantum-well confinement in the
z direction on an equal footing with the lateral (x,y)
confinement, as would be necessary if the strain varied
appreciably over the width of the well, the problem
would be very difficult, even for the conduction band.
However, for currently obtainable strains ( < 1%) (Ref. 4)
and narrow quantum wells, the z dependence of the strain
is negligible. For the conduction band the motion along
the z and (x,y) directions is then decoupled: the strain
potential can be taken as z independent, with its value at
the center of the well, and the calculation reduces to that
of Ref. [4].

For the valence band, the problem is still complicated.
Even for an unstrained quantum well, motion along the z
direction is coupled to the in-plane motion (k;70) be-
cause of the anisotropy of the valence bands. For the
strained quantum well, the inhomogeneous strain mixes
states with different k|, so that the motion along the z
and (x,y) directions becomes coupled by off-diagonal
terms of the operators p,p, and p,p, in H. This is a com-
mon problem for any laterally confined system, not just
for the strain-confined structures considered here. We
notice that there will not be two independent deformation
potentials for “heavy” and “light” holes, respectively. In
some previous work,*°> so-called band-edge modulations
for heavy and light holes were calculated by diagonaliz-
ing D'V while ignoring all terms associated with momen-
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tum operators in the four simultaneous differential equa-
tions (55). In general this is not justified.

If the strain varies sufficiently slowly along the z direc-
tion, and if we neglect strain-induced coupling among the
quantum-well subbands except between the first heavy-
hole and first light-hole subbands [this can be shown to be
similar to the effect of neglecting D?], (54) and (55) can
be simplified to the following form:

24 .2
(sz;;%)%—ac tr(e)+E, |g.=E.8. , (56)
81 81
82 82
(H yen + Htrain) g =E, g |’ (57)
84 84
where
Hy, +Ewy, 0 0 0
0 H,+E, 0 0
Hyen= 0 0  Hy+Ey, 0 )
0 0 0  Hy+Ey
—p+q s* rt 0
s —p—q¢ 0  —r?
Hgin=— , 0 —p—gq s*
0 —-r s —p tgq

gi(x,y) are the envelope function for the in-plane
motions; Hy, and Hy, are in-plane kinetic-energy opera-
tors corresponding to the in-plane dispersions of heavy
and light holes in the quantum well; E,, E,;, andE, are
electron, heavy-hole, and light-hole energies, respectively,
at k,=0; a tr(e), p, g, r, and s are strain potentials
defined in (A21) with average strain e;;(x,y)
=(fale;(x,3,2)|f,, ) instead of €;(x,,2); f,(z) are en-
velope functions for the electron, heavy holes, or light
holes. Due to the slow variation of the strain, we may set
e;i(x,y)=ag;;(x,,0) with a={f,|f,, ), where the origin
of the coordinates has been chosen at the center of the
well. Equation (57) indicates that the in-plane motion of
the heavy and light holes is coupled by the lateral
confinement.

To simplify the problem further, we assume that the
heavy- and light-hole splitting is much greater than the
in-plane kinetic energies. Then (57) can be reduced to two
independent equations by using the same method as in
the impurity problem® to decouple the conduction and
valence bands. For the heavy and light holes, respective-
ly, we obtain

lal*(|r[2+]s]?)
Hy+p—gq——p—— L g, =
[ TP —4q E +p+q—E, 8=E;g, , (58)
|l 2([r[2+|s[?)
Hy+p+q+—=—LTBL o —Fo 59
k mTP T4 8E —p +q +E, 8 181 (59

where SE is the splitting between heavy- and light-hole
bands at k;, =0, and E, and E,; are energy levels for the
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heavy and light holes, referred to the band edges of the
heavy- and light-hole subbands in the quantum well, re-
spectively. Note that the eigenvalue equations (58) and
(59) are nonlinear in the eigenvalues E, or E;. This situa-
tion is not unique, as it is found in the impurity problem
and others.?° In the above equations (55)-(59), we do not
have a picture of a particle with a certain mass moving in
a potential. However, if |E,| <<|8E +p +4| (the diago-
nal term for the light hole) and |E,| << |8E —p +4| (the
diagonal term for the heavy hole), we obtain two simple
effective-mass equations for the heavy and light holes, re-
spectively:

lal(|r[2+|s|*)(SE +2p)
Hy+p—q— —Eg |
e (8E +p +q)? 8n = Bk
(60)
la|2(Ir>+ [s|*)BE —2p)
Hy+p+q+ —FEoa
TP g (8E —p +q)2 8 181
(61)

The specific strain-confined quantum wire structure of
Ref. 4 will be taken as an example of the above theory.
The wire is along the [100] direction, which is taken as
the x axis. For this structure the piezoelectric effect is
minimized (the piezoelectric field is zero except near the
ends of the wire).!* The deformation potential term
a. tr(e) in (56) and the effective potentials in (60) and (61),
evaluated for this structure, are shown in Figs. 1(a) and
1(b). The band-edge modulations of the valence band cal-
culated from equations in Ref. 4 (in its Ref. 24) are also
shown. In fact, the band-edge modulations are very close
to the effective potentials for this specific structure. Po-
tentials without the off-diagonal terms r and s are also
plotted to show the effect of heavy-hole-light-hole cou-
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pling. With increasing 8E the coupling should become
less important. The effective potential for the heavy hole
has an attractive central well, but with off-center minima.
For the light hole, if the in-plane effective mass were posi-
tive, it would be barely attractive at the center, with a
finite barrier. However, for the specific quantum well in
Ref. 4 (with 12-nm width), the light hole has negative in-
plane effective mass for small & ”,27 so that the effective
attractive potential has a double-well structure. Thus,
off-center bound states are expected for both heavy and
light holes.

Equations (56), (60), and (61) have been solved numeri-
cally to obtain energy levels for the quantum wire struc-
ture of Ref. 4, with the potentials shown in Fig. 1. For
the conduction band, the lower-lying bound states are al-
most equally spaced with interval about 2.5 meV, in
agreement with Ref. 4, whose authors correctly assumed
that the bottom of the potential well is close to parabol-
ic.* There are 11 bound states associated with the con-
duction band, as shown in Fig. 2(a). For the heavy hole,
although the depth of the potential well is only about 7
meV, there are as many as 22 bound states due to the rel-
atively large in-plane effective mass.?’” Due to the
double-well-like potential, some lower-lying bound states
are doubly degenerate, and their envelope functions are
concentrated near two ‘“wells” which are close to the
edge or even outside the wire. However, the envelope
functions of some shallow bound states have significant
amplitude near the center of the wire. For the light hole
with negative in-plane effective mass, 27 the effective po-
tential has a double-well structure, and there exist some
eigenstates with negative binding energies. Except for
their negative binding energies, these states are similar to
the heavy-hole bound states, for instance, their envelope
functions have finite extents. The depth of the effective
potential is about the same as that for the heavy hole, but
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FIG. 2. Energy levels of the
bound states in the quantum
wire (a) for the conduction band,
and (b) for the heavy and light
holes. The energy references are
the bottom of the conduction
band and the top of the valence
band in the quantum well, re-
spectively. Odd n for even-parity
. envelope functions, even n for
. odd parity.
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there are only 12 ‘“bound states” for the light hole be-
cause of its smaller in-plane effective mass. Due to the in-
version symmetry of the strain potentials, all the envelope
functions have definite parity.

Because the in-plane dispersion of the light hole has a
“camel’s back” (Ref. 28) structure, some light-hole bound
states are resonant with band states with relative large k.
However, their envelope functions are mostly made up of
band states with small k, (the wire being along x). On
the other hand, the envelope function of the light-hole ex-
citon will include contributions from states with quite
large k., outside the negative mass region. As the light-
hole effective mass changes greatly with the width of the
well,?’ it will be interesting to make quantum wires or
dots on the quantum wells with different width.

One of the major requirements for the validity of the
theory is that the strain must be slowly varying over the
unit cell. The rapidity of the strain variation is deter-
mined mainly by the size of the stressor. For the 180-
nm-wide wire in Ref. 4, the variation of the strain over
one lattice constant is smaller than 3X 10~ (about 1% of
the strain).

In all the above calculations, D® has not been con-
sidered. In general, when D'® is non-negligible, the
strain effect on effective masses of the quantum well
should be taken into account at the same time. This is a
very complicated problem. However, without going to
the detailed calculation, it can be shown that D® can
indeed make a significant contribution within the range
of applicability of the theory, but it is actually negligible
in the above example.

Before going to the case of inhomogeneous strain, let
us consider the contribution of D'® to the hydrostatic
term. For the conduction band of GaAs, assuming
£=1% (corresponding to about 23-kbar hydrostatic pres-
sure), (53) gives a change in the effective mass of 12%,

10 15 20 25

Quantum Number n

which indicates that the contribution of D®" can be

significant within the range of applicability of the theory.
Although this result is for homogeneous strain, it gives us
a rough idea when D‘® may become important for the
more general case of inhomogeneous strain. For inhomo-
geneous strain, the effect of the strain gradient may also
contribute when agky,~1. The contribution of D de-
pends on the specific strain configuration. For the wire
structure of Ref. 4, the strain is smaller than 0.2%, so
neglect of the D® term is valid in this case. However,
stronger confinement has been achieved in some strain-
confined systems; for instance, about a 60-meV redshift
was achieved in a quantum dot structure, 26 compared to
about 20 meV in the wire.* When the strain approaches
1%, the D® term has to be considered.

To examine D‘® more closely, let us consider the con-
duction band of the GaAs. Ignoring terms related to the
spin-orbit splitting of the valence band, the D'? term in
the effective Hamiltonian is then

_ 2
SH, = 2” 5.323V,e,V, —6.06 SV, tr(e)V,
c i i
+6.842v,.e,.jvj] : (62)
i

Including D', the motion along the z and (x,y) direc-
tions becomes coupled in general. For the above-
mentioned [100] wire, the only nonzero off-diagonal com-
ponent of the strain tensor is €,,, thus motion along the y
and z directions is coupled. In this case, the correction of
8H, to the kinetic energy in the strain-confined direction
y is only about 1-2 %. Roughly speaking, the correction
in a dot is twice of that in a wire with the same magni-
tude of the strain. Thus, for a dot with strain of 1%, the
correction may be necessary. In (62), the terms related to
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variation of the effective mass with strain are combined
with the terms related to a strain gradient to give a Her-
mitian operator. Their contributions are comparable for
structures with a stressor size of order of 100 nm, in
which the extension is similar to that of the envelope
function.

IV. SUMMARY

The envelope-function method has been applied to
slowly varying inhomogeneous strain in a semiconductor
with a degenerate band structure. The effects of strain
variation of the kinetic energy and the gradient of the
strain have been considered in general in the eight-band
manifold, and given explicitly for the conduction bands.
Applications to homogeneous strains and hydrostatic
pressure were discussed.

The theory has been applied to laterally confined quan-
tum wells, quantum wires, and quantum dots. Under the
effective-mass approximation, the motion of the holes in
degenerate valence bands under the inhomogeneous
strain should be described by multiband envelope-
function equations (55). For the case of the strain vary-
ing negligibly on the scale of the width of the quantum
well, they can be simplified to (57). If the strain
confinement is weak relative to the heavy- and light-hole
splitting in the wells, they can be further simplified to two
decoupled equations (58) and (59) or (60) and (61).

To first order, the strain variation of the effective mass
and the gradient terms does not affect the electronic
states. When the strain is not sufficiently small and does
not vary sufficiently slowly, we must go beyond the
effective-mass approximation. This second-order effect
can be significant within the range of applicability of the
theory. It can alter not only the energy levels of the elec-
tronic states but also their degeneracy. When applied to
strain-confined quantum wires or quantum dots, it is
necessary to consider the second-order effect for struc-
tures with relative large strain.

Numerical results for the energy levels in a specific
quantum wire structure were also given.
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APPENDIX A

In k-p perturbation theory, the strain Hamiltonian is
given by® 1!

H.=Hy+H,+H,,+H
+Dy+D; +Dy.,+Dso+Dio, (A1)
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where
2
- P .
H, 2m+V0+ 2CZ(VVO)Xpa, (A2)
_ #k?
k o (A3)
#
H :-—k.
kp= P, (A4)
, #
HSO_ 4m2C2(VV0)><k'0' 5 (AS)
D S, Tokik; (A6
k ,zjsij m > )
3 PiPj
DOZ_E_EU — ” +Vil (A7)
ij
2%
D, =—k-ep,
kp™ ep (A8)
[3
Dyo=—75 12&;(VV;)Xp-o—[e:(VV{)]Xp-o
4m CZ 7 ] ]

—(VVy)X(ep)o l , (A9)

b

. ﬁZ 3
P50~ it (z,ef,-wv,j>><k-o~[e-<wo)1><k'a

ii

(A10)

where H | is in the x’ space, and k is the wave vector in x’
space. H, has been calculated!' in an eight-band model
by using Lowdin perturbation. To derive Eq. (33) for the
inhomogeneous strain, we need the result for the homo-
geneous strain. The eight band-edge states given by
Kane,?® which are different from those in Ref. 11, are
chosen in our calculation:

u; =T, —1)=I8)B,
u,=|Te,1)=1S)a,
uy=|Tg,—3)=1/V2|X)—i|Y))B,
uy=|Tg, —1)=—1/V6[(|1X)—ilY))a+2|Z)B],
us=|Tg,1)=1/V6[(|X)+i|Y))B—2|Z)a],
ue=ITg,2)=1/V2(|X)+ilY ))a ,
u; =Ty, —1)=1/V3[—(X)—ilY))a+|Z)B],
ug=IT5, 1) =1/V3[(|1X)+ilY))B+|Z)a],

(A11)

where |S),X), |Y), and |Z) are band-edge states
without spin-orbit interaction, and a and S are spinors
for spin-up and- down. H, is calculated in the above basis
by Lowdin perturbation as in Ref. 11, neglecting H g,
D¢, and the first term in Dgo.!! Keep in mind that (A1)
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is presented in x' space. For homogeneous strain, the
matrix representation of H, is easy to change back to x
space, simply by deleting Dy and the factor of 2 in Dy,
Thus, with the wave vector in x space, H, is given as the
following:
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where #f includes H,, H;, and the coupling to remote
bands by Hy.,, D=Dy+Dso=D;+D,, and H,., and
Dy, contain only coupling between the conduction and
valence bands. # contains only quadratic terms in k, but
H, , and Dy, will give corrections to #f and D to any or-
der of k within the eight-band manifold. These matrices

H,=#+H, ,+D+D,, , (A12)  are
|
A 0 v3r —vaw Tt 0 w Vvart
0 A, 0 —-T V2w V3Tt V2T w
V3aT* 0  —-P+Q S* R* 0 —71_55+ V3R *
~V2W  -T* s -P-Q 0 —RT Vi@ 4/3s*
H= T V2w R 0 —P—Q St -V3s  v20 |’ (A13)
0 V3T 0 —R s —P+9 -VIR —--Ls
V2
—~ 1 — — —
w o =V2TT ——=§ Vv2Q0 —/3s* —Vv2R* z 0
VAT W V3R /IS v2Q - —‘/l—as 0 z
a, 0 V3t V2w ¢t 0 w VvVt
0 a, 0 —t V2w V3t -Vt w
—_ 1 —_
Vi3t 0 —p+ + + 0 R VG
ptqg s r 75 2r
V2wt s —p—¢q 0 —rt Vg st
$1_ t "‘\/Ew r 0 —pP—q s+ —V_%s ‘/Eq s (A14)
3 5 1
0 V3t 0 - —p+ V2 -
r s pTq r 75
=+ 1 - ~ _
wo VUt —ms Vig st =Vt z 0
= = ~ = 1
V2t w V2r /3 V2q _\/—ES+ 0 2
00 0 0 0 0 0 0
00 0 0 0 0 0 0
00 0 0 0 0 — Lot vt
V2
00 0 0 0 0 Vg /I
D=lbo o 0 0 0 —3s Vag |’ (A15)
5 1
r 1/25'
1 = —~ _
——s' V2¢' —/32 —V2p ’
00 ‘/Zs 2q >S5 2r z 0
3yt ) A 1 , ,
00 V2r /s V2g 5" + 0 z
| o kp
Hep= lgpt o |- (A16)
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P Vvt vaut -y 0 U —-Varv
| o -vt Vvaut —v3y —vavt U | (A7)
0 kp
Dy, = kpt o | (A18)
with
) V3t vayt —v 0 u —V2v
Pl 0 =" vt =V vt w0 (A19)
f
where where E,, E,, and E, —E_ are band edges of 'y, 5, and
Ag=E,+(A'+#/2m)k?+k3+k3), [';, respectively; E,=E, —E, is then the band gap, and
P=—E,+y#/2m (k2 +k2+k?), E, is the spin-orbit §plitting. A’ is due to the coupling
between the conduction band and the remote bands,'' 7,
Q=—v,#/2m(k+ki—2k3) . .

-~ 5 ) g Y, and y; are so-called modified Luttinger parameters
R=—V3#/2m[y,(ki—k3)—2iy;k k,], due to the coupling between the valence band and the re-
S=2\/§y3ﬁ2/2mk3(k1 —ik,) , mote bands;'! B and B’ (for b’ in Ref. 11) are parameters

5 5 5 5 (A20) for the lack of inversion symmetry; !
Z=E,—E,—y,#/2m(ky+k;+k3), Py=—ifi/m(S|p,|X); a’=a —2E,/9, b'=b—2E, /9,
V:po/\/g(kz_ikl) , and d'=d —2V'3E,/9, where a,, a, b, and d are

. 2 deformation otentials  defined in  Ref. 8
U=iP,/V s p )
B 0‘//_ 3k a,={(S|—p.p.+ V. IS), a=(1+2m)/3, b=(1—m)/3,
T=B/ 6_(k2"1k1 ks, and d=n/V3, where [=(X|—p.p,+V. /X)), m
W=B/V3kk, , = (Y| =p,ps+ Vi |Y), and n=2X|=p,p,+V,.|Z);
and 8a=2E,/3, 8b=E,/3, and 8d=V'3E, /3. These
—a (e 4eten) three new deformation potentials appear because
aO__ _ac e +22 _i” ’ Dy+ Dgg is reorganized as O, +2D,. + has been used for
p _ /a (e teptey), the Hermitian conjugate in this Appendix.
g=b'/2(e) +ey—2ey,) , It should be pointed out that due to the difference in
r=Vv3/2b'(g;;—&y)—id'e,, , the basis used here and Ref. 11, the dispersion and strain
s=—d'(e;3—igy), behavior of heavy-hole |T'g,+3) and light-hole states
z=a'(g; teptey), A21) |Tg,£4 ) are switched, for example, along the [001] direc-
- VEltie.  — . tion or under [001] uniaxial stress.
v=Po/ 6[(_:_8(11.15 5_218)k1) : (]1812 ek Another perturbation procedure (“transformation
. R A R method”) different from Lowdin’s was proposed,® which
u= "lPo_/‘/3(€31k1 tepk, tepks), is in fact based on the same idea used by Luttinger and
t=B'/V6(ey;—ig3) , Kohn'? in the impurity problem, and is employed in the
w=RB'/V 3512 , main text of this paper. The advantage of this “transfor-
g’ =8b/2(e), +ep—2¢e3) , mation method” is that the perturbation. can be worked
=3 . out order by order. Up to terms quadratic in k, the lack
r'=Vv3/28b(e, —ey)—ibdey , of inversion symmetry has no effect in this order for the
s'=—bd(g;3—igy) , unstrained crystal, and the effective Hamiltonian for the
z'=08a(e | +eytesy). unstrained crystal will be block diagonal:
J
A4, © 0
0 A4, 0 0
1 —
0 0 —P+ S + R + L + vV 1+
P+Q 0 5 2R
0 0 S —P—Q 0 —~R* V20" Vi3St
0= — — A22
H 0 O 0 —P—Q N —/3is'  VagQ' |’ (A22)
= 1
_ _ - B 1
0 0 0 R S P+Q 2R 55
0o 0 - T/%S' V2Qr —/Ist —VIR'Y Z 0
0 0 V2R is' V20 - 71_55'+ 0 z
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where
Ag=E,+{A'+#/2m +P}/3[2/E, +1/(E,+A)]}
X(k2+ki+k3),
P=—E,+(y+8y ) #/2m (k}+ki+k?),
Q=—(y,+8y,)#/2m (k3 + k3 —2k3),
R=—V3#/2m[(y,+8y,)(k}—k2)
—2i(y3+8v3k ik, ],
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R'=—V3#/2m[(y,+8y;)k?—k2)
—2i(y;+8v3)kk, ],

S'=2V3(y;+ 8y} /2mky(k, —ik,),

where  8y,=E,/(3E,), ) =8y,=E,/(6E,),

8y\=E,/[3(E,+E,)], and 8y,=8y,=E, /12[1/E, +1/

(E,+E;)]. We notice that in # unique v_e}lues of Q, R,
and S appear in the 6 X 6 block, but not in H.

S=2V3(y+ 6y )2/ 2mk,(k, —ik,) , (A23) APPENDIX B
Z=E,—E.—(y,+8y,)#/2m (k2 +k2+k2), From results in Sec. II, the envelope-function equa-
2By oy A /2m (ki 2 3) tions for the bound states associated with the conduction
Q'=—(y,+8y)#/2m (k3 +ki—2k?), band under an inhomogeneous strain can be written as
J
2
L +M,,+ G
m. +a tr(e)+ M +Gy, 12 F, F,
=E (B1)
2 F F
-G, L ta tr(e)+ M, +GY | 2 2
2m,
—
In this appendix, we want to demonstrate that even where
when the coupling to the valence band removes the spin
degeneracy of the conduction band, the bound states are _ 22 R
still Kramer degenerate, and the Hermiticity of the Hy= om ta tr(e)+ My +Gy; - (B3)

effective Hamiltonian can be recovered after considering
the degeneracy. Also, the extension to the impurity prob-
lem will be discussed.

We notice that the operator Dé” is complex and can be
written as G,, =G +iG!, and G,,=G% +iG{,, where
GX and G¥ stand for the real parts, and G{, and G, for
the imaginary parts. We also try to write the envelope
functions as F,=F,;+iF,, and F,=F,, +iF,,. Substi-
tuting these definitions in (B1), we then have

H; —Gi{, G% —Gi,|(Fy, Fy
G{l Hd G{Z Gﬁ F12 F12
-6% —6L, Hy 6l ||Fu|TF R
G, —-G&% —-GI, H; ||Fxn Fy
(B2)
J
H;+iG!, -G, —iG% 0 0
Gl,—iG% H,—iG}, 0 0
0 0 H,+iGl, GI, +iG%
0 0 -G, +iG% H,—iGi,

c

This is a set of equations for four eigenstates, and the
effective Hamiltonian is Hermitian. Introducing a uni-
tary transformation

i 1
—0 0——
V2 V2
i 1
0— —0
v2 V2
U= 1 . , (B4)
0— —o0
v2 V2
1 i
——_O _—
V2 V2
and applying it to Eq. (B2), we arrive at
1 1
Fa E Fa (B5)
F Fu |’
Fy F

where F; are linear combinations of F;;. The solutions then give twofold degenerate levels, with Fj; ~F3; and

[ -1
F12 FZ]'

The theory for the inhomogeneous strain can be used to derive the equations for the long-range impurity problem as
discussed in Sec. II of the main text. For donor states associated with the conduction band, we have
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a o _B1 o
2. +U(x)+Gy, G, F| 2= E! (E,+E,)” ([(V,+iV,)U]V,
2 F.
'_Grz 5L+U(x)+G’1'1 2
c —(V3UNV,+iV,)} .
F,
=E , (B6)
F, (B8)
where U (x) is the impurity potential, and
P o 1 Compared with the results given in Ref. 20, it is found
G“=—-3— F+m Z(ViU)V,- that G,,(=G7)) and G, (=—GY,) in fact agree with
g g s i (B27) and (B28) of Ref. 20 [the order of the basis func-
Pl q ) tions is changed from (Sa,SpB) there to (Sf,Sa) here,
—i—= (V,0)V,—(V,U)V,], and (B27) there can be simplified to (B7)]. While the di-
3 E; (E;+E) agonal terms were given to be equal in Ref. 20, they are

(B7)
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