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Negative Refraction of Electromagnetic
and Electronic Waves in Uniform Media

Y. Zhang and A. Mascarenhas

Summary. We discuss various schemes that have been used to realize negative
refraction and zero reflection, and the underlying physics that dictates each scheme.
The requirements for achieving both negative refraction and zero reflection are
explicitly given for different arrangements of the material interface and different
structures of the electric permittivity tensor ε. We point out that having a left-
handed medium is neither necessary nor sufficient for achieving negative refraction.
The fundamental limitations are discussed for using these schemes to construct a
perfect lens or “superlens,” which is the primary context of the current interest in
this field. The ability of an ideal “superlens” beyond diffraction-limit “focusing” is
contrasted with that of a conventional lens or an immersion lens.

1.1 Introduction

1.1.1 Negative Refraction

Recently, negative refraction has attracted a great deal of attention, largely
due to the realization that this phenomenon could lead to the development
of a perfect lens (or superlens) [1]. A perfect lens is supposed to be able to
focus all Fourier components (i.e., the propagating and evanescent modes)
of a two-dimensional (2D) image without missing any details or losing any
energy. Although such a lens has yet to be shown possible either physically
and practically, the interest has generated considerable research in electromag-
netism and various interdisciplinary areas in terms of fundamental physics and
material sciences [2–4]. Negative refraction, as a physical phenomenon, may
have much broader implications than making a perfect lens. Negative refrac-
tion achieved using different approaches may involve very different physics
and may find unique applications in different technology areas. This chapter
intends to offer some general discussion that distinguishes the underlying
physics of various approaches, bridges the physics of different disciplines
(e.g., electromagnetism and electronic properties of the material), and pro-
vides some detailed discussions for one particular approach, that is, negative
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refraction involving uniform media with conventional dielectric properties. By
uniform medium we mean that other than the microscopic variation on the
atomic or molecular scale the material is spatially homogeneous.

The concept of negative refraction was discussed as far back as 1904 by
Schuster in his book An Introduction to the Theory of Optics [5]. He indicated
that negative dispersion of the refractive index, n, with respect to the wave-
length of light, λ, i.e., dn/dλ < 0, could lead to negative refraction when light
enters such a material (from vacuum), and the group velocity, vg, is in the
opposite direction to the wave (or phase) velocity, vp. Although materials with
dn/dλ < 0 were known to exist even then (e.g., sodium vapor), Schuster stated
that “in all optical media where the direction of the dispersion is reversed,
there is a very powerful absorption, so that only thicknesses of the absorb-
ing medium can be used which are smaller than a wavelength of light. Under
these circumstances it is doubtful how far the above results have any applica-
tion.” With the advances in material sciences, researchers are now much more
optimistic 100 years later. Much of the intense effort in demonstrating a “poor
man’s” superlens is directed toward trying to overcome Schuster’s pessimistic
view by using the spectral region normally having strong absorption and/or
thin-film materials with film thicknesses in the order of (or even a fraction of)
the wavelength of light [2]. However, with regard to the physics of refraction,
for a “lens” of such thickness, one may not be well justified in viewing the
transmission as refraction, because of various complications (e.g., the ambi-
guity in defining the layer parameters [6] and the optical tunnel effect [7]).

The group velocity of a wave, vg(ω,k) = dω/dk, is often used to describe
the direction and the speed of its energy propagation. For an electromagnetic
wave, strictly speaking, the energy propagation is determined by the Poynting
vector S. In certain extreme situations, the directions of vg and S could even
be reversed [8]. However, for a quasimonochromatic wave packet in a medium
without external sources and with minimal distortion and absorption, the
direction of S does coincide with that of vg [9]. For simplicity, we will focus
on the simpler case, where the angle between vg and wave vector k is of
significance in distinguishing two types of media: when the angle is acute or
k · vg > 0, it is said to be a right-handed medium (RHM); when the angle is
obtuse or k · vg < 0, it is said to be a left-handed medium (LHM) [10]. If one
prefers to define the direction of the energy flow to be positive, an LHM can
be referred to as a material with a negative wave velocity, as Schuster did in
his book. A wave with k · vg < 0 is also referred to as a backward wave (with
negative group velocity), in that the direction of the energy flow is opposite
to that of the wave determined by k [11, 12]. Lamb was perhaps the first to
suggest a one-dimensional mechanical device that could support a wave with
a negative wave velocity [13], as mentioned in Schuster book [5]. Examples of
experimental demonstrations of backward waves can be found in other review
papers [4, 14]. Unusual physical phenomena are expected to emerge either in
an individual LHM (e.g., a reversal of the group velocity and a reversal of
Doppler shift) or jointly with an RHM (e.g., negative refraction that occurs
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at the interface of an LHM and RHM) [10]. The effect that has received most
attention lately is the negative refraction at the interface of an RHM and
LHM, which relies on the property k · vg < 0 in the LHM.

There are a number of ways to realize negative refraction [4]. Most ways
rely on the above-mentioned LH behavior, i.e., k · vg < 0, although LH
behavior is by no means necessary or even sufficient to have negative
refraction. Actually, LH behavior can be readily found for various types
of wave phenomena in crystals. Examples may include the negative disper-
sion of frequency ω(k) for phonons and of energy E(k) for electrons; however,
they are inappropriate to be considered as uniform media and thus to discuss
refraction in the genuine sense, because the wave propagation in such media is
diffractive in nature. For a simple electromagnetic wave, it is not trivial to find
a crystal that exhibits LH behavior. By “simple electromagnetic wave,” we
refer to the electromagnetic wave in the transparent spectral region away from
the resonant frequency of any elementary excitation in the crystal. In this
case, the light–matter interaction is mainly manifested as a simple dielectric
function ε(ω), as in the situation often discussed in crystal optics [15], where
ε(ω) is independent of k.

1.1.2 Negative Refraction with Spatial Dispersion

The first scheme to be discussed for achieving negative refraction relies on
the k dependence of ε to produce the LH behavior. The dependence of ε(k)
or n(λ) is generally referred to as spatial dispersion [16, 17], meaning that
the dielectric parameter varies spatially. Thus, this scheme may be called
the spatial-dispersion scheme. The negative refraction originally discussed by
Schuster in 1904 could be considered belonging to this scheme, although the
concept of spatial dispersion was only introduced later [17] and discussed in
greater detail in a book by Agranovich and Ginzburg, Spatial Dispersion in
Crystal Optics and the Theory of Excitons [9]. If one defines vp = ω/k = c/n,
and assumes n > 0, then according to Schuster, vg is related to vp by [5]

vg = vp − λ
dvp

dλ
, (1.1)

and the condition for having a negative wave velocity is given as λ dvp/dλ >
vp, which is equivalent to dn/dλ < −n/λ < 0. Negative group velocity and
negative refraction were specifically associated with spatial dispersion by
Ginzburg and Agranovich [9, 17]. Recently, a generalized version of this con-
dition has been given by Agranovich et al. [18]. In their three-fields (E,D,B)
approach, with a generalized permittivity tensor ε̃(ω,k) (see the chapter
of Agranovich and Gartstein for more details), the time-averaged Poynting
vector in an isotropic medium is given as

S =
c

8π
Re(E∗xB) − ω

16π
∇kε̃(ω,k)E∗E, (1.2)
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where the direction of the first term coincides with that of k, and that of the
second term depends on the sign of ∇kε̃(ω,k), which could lead to the reversal
of the direction of S with respect to k under certain conditions. If permeability
µ = 1 is assumed, the condition can be simplified to dε/dk > 2ε/k > 0 (here,
ε is the conventional permittivity or dielectric constant), which is essentially
the same as that derived from (1.1). Spatial dispersion is normally very weak
in a crystal, because it is characterized by a parameter a/λ, where a is the
lattice constant of the crystal and λ is the wavelength in the medium. How-
ever, when the photon energy is near that of an elementary excitation (e.g.,
exciton, phonon, or plasmon) of the medium, the light–matter interaction
can be so strong that the wave is neither pure electromagnetic nor electronic,
but generally termed as a polariton [19, 20]. Thus, the spatial dispersion is
strongly enhanced, as a result of coupling of two types of waves that normally
belong to two very different physical scales. With the help of the polariton
effect and the negative exciton dispersion dE(k)/dk < 0, one could, in princi-
ple, realize negative refraction for the polariton wave inside a crystal if the
damping is not too strong [21]. Because damping or dissipation is inevitable
near the resonance, similar to the case of sodium vapor noted by Schuster [5],
a perfect lens is practically impossible with this spatial-dispersion scheme.

It is worth mentioning that the damping could actually provide another
possibility to induce k · vg < 0 for the polariton wave in a crystal, even
though in such a case the direction of vg may not be exactly the same as
that of S. In the spatial-dispersion scheme, the need to have dE(k)/dk < 0
is based on the assumption of the ideal polariton model, i.e., with vanishing
damping. However, with finite damping, even with the electronic dispersion
dE(k)/dk > 0, one may still have one polariton branch exhibiting dω/dk < 0
near the frequency window ∆LT, splitting the longitudinal and transverse
mode, and thus, causing the exhibiting of LH behavior [7].

1.1.3 Negative Refraction with Double Negativity

Mathematically, the simplest way to produce LH behavior in a medium is
to have both ε < 0 and µ < 0, as pointed out by Pafomov [22]. Double
negativity, by requiring energy to flow away from the interface and into the
medium, also naturally leads to a negative refractive index n = −√

εµ, thus
facilitating negative refraction at the interface with an RHM, as discussed by
Veselago [10]. At first glance, this double-negativity scheme would seem to be
more straightforward than the spatial-dispersion scheme. However, ε < 0 is
only known to occur near the resonant frequency of a polariton (e.g., plasmon,
optical phonon, exciton). Without damping and spatial dispersion, the spec-
tral region of ε < 0 is totally reflective for materials with µ > 0. µ < 0 is also
known to exist near magnetic resonances, but is not known to occur in the
same material and the same frequency region where ε < 0 is found. Indeed,
if in the same material and spectral region one could simultaneously have
ε < 0 and µ < 0 yet without any dissipation, the material would then turn
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transparent. In recent years, metamaterials have been developed to extend
material response and thus allow effective ε and µ to be negative in an over-
lapped frequency region [3]. The hybridization of the metamaterials with,
respectively, εeff < 0 and µeff < 0 has made it possible to realize double nega-
tivity or neff < 0 in a small microwave-frequency window, and to demonstrate
negative refraction successfully [23]. However, damping or dissipation near the
resonant frequency still remains a major obstacle for practical applications of
metamaterials. There is a fundamental challenge to find any natural material
with nonunity µ at optical frequencies or higher, because of the ambiguity in
defying µ at such frequencies [18,24]. Although there have been a few demon-
strations of metamaterials composed of “artificial atoms” exhibiting nonunity
or even negative effective µ and negative effective refractive index at optical
frequencies [25–29], no explicit demonstration of negative refraction or imag-
ing has been reported, presumably because of the relative large loss existed in
such materials. Thus, the double-negativity scheme essentially faces the same
challenge that the spatial-dispersion scheme does in realizing the dream of
making a perfect lens.

1.1.4 Negative Refraction Without Left-Handed Behavior

It is perhaps understandable that the general public might have the impression
that negative refraction never occurs in nature [23, 30]. One could only make
such a claim if one insists on using isotropic media [4, 31, 32]. The simplest
example of negative refraction is perhaps refraction of light at the interface
of air and an anisotropic crystal without any negative components of ε and
µ, as illustrated in Fig. 1.1 [32–36]. A standard application of such an optical
component is a beam displacer. Thus, negative refraction is a readily observ-
able phenomenon, if one simply allows the use of an anisotropic medium.
This anisotropy scheme has enabled the demonstration of negative refrac-
tion in the most genuine sense – that is, the classic refraction phenomenon
in uniform media or optical crystals in a broad spectral range and involving
neither electronic nor magnetic resonances [31, 34, 35]. As in the case of the
double-negativity scheme, to eliminate the reflection at the medium interface,
the anisotropy scheme also needs to satisfy certain conditions for matching
the dielectric properties of the two media, as illustrated by a special case of
a bicrystal structure [31]. In general, eliminating the reflection loss requires
material parameters to automatically ensure the continuity of the energy flux

optical axis 

Fig. 1.1. Refraction of light at the interface of air and a (positive) uniaxial crystal



6 Y. Zhang and A. Mascarenhas

along the interface normal [32]. Generalization has been discussed for the
interface of two arbitrary uniaxially anisotropic media [33, 37, 38]. Note that
negative refraction facilitated by the anisotropy scheme does not involve any
LH behavior and thus cannot be used to make a flat lens, in contrast to
that suggested by Veselago, using a double-negativity medium [10], which
is an important distinction from the other schemes based on negative group
velocity. However, one could certainly envision various important applications
other than the flat lens.

1.1.5 Negative Refraction Using Photonic Crystals

The last scheme we would like to mention is the photonic crystal scheme.
Although it is diffractive in nature, one may often consider the electromagnetic
waves in a photonic crystal as waves with new dispersion relations, ωn(k),
where n is the band index, and k is the wave vector in the first Brillouin zone.
For a three-dimensional (3D) or 2D photonic crystal [39, 40], the direction of
the energy flux, averaged over the unit cell, is determined by the group velocity
dωn(k)/dk, although that might not be generally true for a 1D photonic crys-
tal [40]. If the dispersion is isotropic, the condition q·dωn(q)/dq < 0, where q
is the wave vector measured from a local extremum, must be satisfied to have
LH behavior. Similar to the situations for the spatial-dispersion and double-
negativity schemes, q·dωn(q)/dq < 0 also allows the occurrence of negative
refraction at the interface of air and photonic crystal as well as the imaging
effect with a flat photonic slab [4,41–44]. However, similar to the situation for
the anisotropy scheme, one may also achieve negative refraction with positive,
but anisotropic, dispersions [40]. Because of the diffractive nature, the phase
matching at the interface of the photonic crystal often leads to complications,
such as the excitation of multiple beams [40,45].

1.1.6 From Negative Refraction to Perfect Lens

Although the possibility of making a flat lens with the double-negativity
material was first discussed by Veselago [10], the noted unusual feature alone,
i.e., a lens without an optical axis, would not have caused it to receive such
broad interest. It was Pendry who suggested perhaps the most unique aspect
of the double-negativity material – the potential for realizing a perfect lens
beyond negative refraction [1] – compared to other schemes that can also
achieve negative refraction. Apparently, not all negative refractions are equal.
To make Pendry’s perfect lens, in addition to negative refraction, one also
needs (1) zero dissipation, (2) amplification of evanescent waves, and (3)
matching of the dielectric parameters between the lens and air. Exactly zero
dissipation is physically impossible for any real material. For an insulator
with an optical bandgap, one normally considers that there is no absorption
for light with energy below the bandgap, if the crystal is perfect (e.g., free of
defects). However, with nonlinear optical effects taken into account, there will
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always be some finite absorption below the bandgap due to harmonic transi-
tions [46]. Although it is typically many orders of magnitude weaker than the
above-bandgap linear absorption, it will certainly make the lens imperfect.
Therefore, a perfect lens may simply be a physically unreachable singularity
point. For the schemes working near the resonant frequencies of one kind or
the other, the dissipation is usually strong, and thus more problematic to
allow such a lens to be practically usable.

Mathematically, double-negativity material is the only one, among all the
schemes mentioned above, that automatically provides a correct amount of
amplification for each evanescent wave [1]. Unfortunately, this scheme becomes
problematic at high frequencies because of the ambiguity in defining nonunity
µ at high frequencies [18, 24]. The other schemes – spatial dispersion and
photonic crystals – may also amplify the evanescent components when the
effective refractive index neff < 0, but typically with some complications
(e.g., the amplification magnitude might not be exactly correct or the res-
olution is limited by the periodicity of the photonic crystal) [47,48].

One important requirement of negative refraction for making a perfect
lens is matching the dielectric parameters (“impedances”) of the two media
to eliminate reflection, as well as aberration [49], for instance, n1 = −n2

for the double-negativity scheme. In addition to the limitation caused by
finite damping, another limitation faced by both the spatial-dispersion and
double-negativity schemes is frequency dispersion, which prohibits the match-
ing condition of the dielectric parameters to remain valid in a broad frequency
range. For the spatial-dispersion scheme, the frequency dispersion ε(ω) is
apparent [9]. It is less trivial for the double-negativity scheme, but it was
pointed out by Veselago that “the simultaneous negative values of ε and µ
can be realized only when there is frequency dispersion,” in order to avoid the
energy becoming negative [10]. For the photonic crystal, the effective index
is also found to depend on frequency. Therefore, even for the ideal case of
vanishing damping, the matching condition can be found at best for discrete
frequencies, using any one of the three schemes discussed above.

However, even with the practical limitations on the three aspects – damp-
ing, incorrect magnitude of amplification, and dielectric mismatch – one can
still be hopeful of achieving a finite improvement in “focusing” light beyond
the usual diffraction limit [50], in addition to the benefits of having a flat lens.
A widely used technique, an immersion lens [51], relies on turning as many
evanescent waves as possible into propagating waves inside the lens, and it
requires either the source or image to be in the near-field region. Compared
to this immersion lens, the primary advantage of the “superlens” seems to
be the ability to achieve subwavelength focusing with both the source and
image at far field. An immersion lens can readily achieve ∼ λ/4 resolution
at ∼200 nm in semiconductor photolithography [52]. With a solid immersion
lens, even better resolution has been achieved (e.g., ∼0.23λ at λ = 436 nm [53],
∼λ/8 at λ = 515 nm [54]). Thus far, using negative refraction, there have
only been a few experimental demonstrations of non-near-field imaging with
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improved resolution (e.g., 0.4λ image size at 1.4λ away from the lens [55],
using a 2D quasicrystal with λ = 25mm; 0.36λ image size at 0.6λ away from
the lens [56], using a 3D photonic crystal with λ = 18.3mm). In addition,
plasmonic systems (e.g., ultra thin metal film) have also be used for achieving
subwavelength imaging in near field [57, 58], although not necessarily related
to negative refraction.

Some further discussion is useful on the meaning of “focusing” as used by
Pendry for describing the perfect lens [1]. The focusing power of a lens usually
refers to the ability to provide an image smaller than the object. What the
hypothetical flat lens can do is exactly reproduce the source at the image site,
or equivalently, spatially translate the source by a distance of 2d, where d
is the thickness of the slab. Thus, mathematically, a δ-function source will
give rise to a δ-function image, without being subjected to the diffraction
limit of a regular lens, i.e., λ/2 [59]. And such a “superlens” can, in principle,
resolve two objects with any nonzero separation, overcoming the Rayleigh
criterion of 0.61λ for the resolving power of a regular lens [59]. However, what
this “superlens” cannot do is focus an object greater than λ to an image
smaller than λ; thus, it cannot bring a broad beam to focus for applications
such as photolithography, whereas a regular lens or an immersion lens can, in
principle, focus an object down to the diffraction limit λ/2 or λ/(2n) (n is the
refractive index of the lens material). Therefore, it might not be appropriate
to call such optical device of no magnification a “lens,” though it is indeed
very unique. One could envision using the “superlens” to map or effectively
translate a light source, while retaining its size that is already below the
diffraction limit to begin with.

1.2 Conditions for Realizing Negative Refraction
and Zero Reflection

Let us consider a fairly general case of refraction of light at the interface of
two uniform media, as shown in Fig. 1.2. The media are assumed to have
anisotropic permittivity tensors εL and εR, both with uniaxial symmetry,

interface 

Z 

optical axis optical axis 

θL θR

X 

Fig. 1.2. The interface (the x–y plane) of two uniaxial anisotropic media
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but isotropic permeabilities µL and µR, where L and R denote the left-hand
and right-hand side, respectively. Their symmetry axes are assumed to lie
in the same plane as the plane of incidence, which is also perpendicular to
the interface, but nevertheless may incline at any angles with respect to the
interface normal. In the principal coordinate system (x′, y′, z′), the relative
permittivity tensors are given by

εL,R =

⎛
⎝

εL,R
1 0 0
0 εL,R

1 0
0 0 εL,R

3

⎞
⎠ , (1.3)

where ε1 and ε3 denote the dielectric components for electric field E polarized
perpendicular and parallel to the symmetric axis. In the (x,y,z) coordinate
system shown in Fig. 1.2, the tensor becomes

εL,R

=

⎛
⎝

εL,R
1 cos2(θL,R) + εL,R

3 sin2(θL,R) 0 (εL,R
3 − εL,R

1 ) sin(θL,R) cos(θL,R)

0 εL,R
1 0

(εL,R
3 − εL,R

1 ) sin(θL,R) cos(θL,R) 0 εL,R
3 cos2(θL,R) + εL,R

1 sin2(θL,R)

⎞
⎠ .

(1.4)

Rather generalized discussions for the reflection–refraction problem associated
with the interface defined in Fig. 1.2 have been given in the literature for the
situation of ε1 and ε3 both being positive [37,38]. For an ordinary wave with
electric field E polarized in the y-direction, i.e., perpendicular to the plane
of incidence (a TE wave), the problem is equivalent to an isotropic case with
different dielectric constants εL

1 and εR
1 for the left-hand and right-hand side.

It is the reflection and refraction of the extraordinary or H-polarized wave,
i.e., with E polarized in the x–z plane (a TM wave), that has generally been
found to be more interesting. For the E- and H-polarized waves, the dispersion
relations are given below for the two coordinate systems:

k′2
x + k′2

z =
ω2

c2
µε1, (1.5E)

k′2
x

ε3
+

k′2
z

ε1
=

ω2

c2
µ, (1.5H)

and

k2
x + k2

z =
ω2

c2
µε1, (1.6E)

(kx cos θ0 − kz sin θ0)2

ε3
+

(kx sin θ0 + kz cos θ0)2

ε1
=

ω2

c2
µ, (1.6H)

where θ0 is the inclined angle of the uniaxis of the medium with respect to
the z-axis. The lateral component kx is required to be conserved across the
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interface and the two solutions for kz (of ±) are found to be (with k in the
unit of ω/c) the following:

k±
z = ±

√
µε1 − k2

x, (1.7E)

k±
z =

kxδ ± 2
√

γ(βµ − k2
x)

2β
, (1.7H)

where γ = ε1ε3, β = ε1 sin2 θ0+ε3 cos2 θ0, δ = sin(2θ0)(ε1−ε3). The Poynting
vector S = E∗ × H, corresponding to k±

z , can be given as

S±
x = |Ey|2

kx

cµµ0
, (1.8E)

S±
x = |Hy|2

2γkx ∓ δ
√

γ(βµ − k2
x)

2cε0βγ
, (1.8H)

and

S±
z = ± |Ey|2

√
µε1 − k2

x

cµµ0
, (1.9E)

S±
z = ± |Hy|2

√
γ(βµ − k2

x)
cε0γ

, (1.9H)

where Ey and Hy are the y components of E and H, respectively. If the
incident beam is assumed to arrive from the left upon the interface (i.e., energy
flows along the +z direction), one should choose from (1.7) the solution that
can give rise to a positive Sz. Note that (1.8) and (1.9) are valid for either
side of the interface, and positive as well as negative ε1, ε3, and µ. With these
equations, we can conveniently discuss the conditions for realizing negative
refraction and zero reflection. Note that for the E-polarized wave, the sign
of k·S is only determined by that of ε1, since k·S = |Ey|2ωε0ε1; for the H-
polarized wave, it is only determined by µ, since k·S = |Hy|2ωµ0µ.

Since Sz is always required to be positive, the condition to realize negative
refraction is simply to request a sign change of Sx across the interface. For
realizing zero reflection, if one can assure the positive component of Sz to be
continuous across the interface, the reflection will automatically be eliminated.
Therefore, one does not need to consider explicitly the reflection [32].

If both media are isotropic, i.e., ε1 = ε3 = ε, we have Sx ∝ kx/µ
and S±

z ∝ ±
√

µε − k2
x/µ for the E-polarized wave, Sx ∝ kx/ε and S±

z ∝
±

√
ε2(εµ − k2

x)/ε2 for the H-polarized wave. To have negative refraction for
both of the polarizations, the only possibility is to have ε and µ changing
sign simultaneously. To have zero reflection for any kx, the conditions become
|εL| = |εR| and |µL| = |µR|, and (εµ)L = (εµ)R. Since εµ > 0 is necessary for
the propagating wave, the conditions become εL = −εR and µL = −µR, as
derived by Veselago [10]. It is interesting to note that if one of the media is
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replaced with a photonic crystal with a negative effective refractive index, the
“impedance” matching conditions become much more restrictive. In has been
found that to minimize the reflection the surrounding medium has to have a
pair of specific ε and µ for a given photonic crystal [60] and the values could
even depend on the surface termination of the photonic crystal [61].

If the media are allowed to be anisotropic, several ways exist to achieve
negative refraction, even if we limit ourselves to µ being isotropic. For the
E-polarized wave, since Sx ∝ kx/µ, negative refraction requires µ < 0 on
one side, assuming µR < 0 (the left-hand side is assumed to have everything
positive). In the meantime, because Sz ∝ ±

√
µε1 − k2

x/µ, one also needs to
have εR

1 < 0 to make the wave propagative. Thus, with εR
1 < 0 and µR < 0

while keeping εR
3 > 0, one can have negative refraction, and zero reflection

for the E-polarized wave occurring for any kx when µR = −µL and (ε1µ)L =
(ε1µ)R. This situation is similar to the isotropic case with ε = ε1, although
there will be no negative refraction for the H-polarized wave.

For the H-polarized wave, if both media are allowed to be anisotropic
but the symmetry axes are required to be normal to the interface (i.e., θL =
θR = 0◦), we have Sx ∝ kx/ε3 and Sz ∝ ±

√
ε1ε3(ε3µ − k2

x)/(ε1ε3) > 0.
Negative refraction requires ε3 < 0 on one side, again assumed to be the
right-hand side (the left-hand side is assumed to have everything positive).
If ε1 < 0, then µR < 0 is also needed to have a propagating wave; we have
SR

z ∝
√

εR
1 εR

3 (εR
3 µR − k2

x)/(εR
1 εR

3 ), and the conditions for zero reflection are
(ε1ε3)L = (ε1ε3)R and (ε3µ)L = (ε3µ)R. If εR

1 > 0, then µR > 0 is necessary
to have a propagating wave; we have SR

z ∝ −
√

εR
1 εR

3 (εR
3 µR − k2

x)/(εR
1 εR

3 ), but
zero reflection is not possible except for kx = 0 and when (ε1ε3)L = |ε1ε3|R
and |ε3µ|L = |ε3µ|R. The results for θL = θR = 90◦ can be obtained by simply
replacing ε3 with ε1 in the results for θL = θR = 0◦. Similar or somewhat
different cases have been discussed in the literature for either θL = θR = 0◦

or θL = θR = 90◦, leading to the conclusion that at least one component of
either ε or µ tensor needs to be negative to realize negative refraction [62–66].

However, the relaxation on the restriction of the optical axis orientations,
allowing 0 < θL < 90◦ and 0 < θR < 90◦, makes negative refraction and zero
reflection possible even if both ε and µ tensors are positive definite. When ε is
positive definite, we have γ > 0 and β > 0, and in this case µ > 0 is necessary
to have propagating modes. The condition for zero reflection can be readily
found to be γL = γR, and (βµ)L = (βµ)R. For the case of the interface being
that of a pair of twinned crystals [31], these requirements are automatically
satisfied for any angle of incidence. The twinned structure assures that the
zero-reflection condition is valid for any wavelength, despite the existence of
dispersion; however, for the more-general case using two different materials,
the condition can at best be satisfied at discrete wavelengths because the
dispersion effect may break the matching condition, similar to the case of
ε = µ = −1. The negative-refraction condition can be derived from (1.8H)
(since γ > 0, S+

x should be used). Note that S+
x = 0 at kx0 = δ

√
βµ/

√
4γ + δ2.

If kL
x0 < kR

x0(k
L
x0 > kR

x0), Sx changes sign across the interface or negative
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refraction occurs in the region kL
x0 < kx < kR

x0(k
R
x0 < kx < kL

x0). For the crys-
tal twin with θL = π/4 and θR = −π/4, kL

x0 = −kR
x0 = (ε1−ε3)/

√
2(ε1 + ε3)).

When ε3 > ε1 (i.e., positive birefringence) in the region of kL
x0 < kx < kR

x0,
SL

x > 0 and SR
x < 0. For any given θL, ε1, and ε3, the maximum bending of

the light beam or the strongest negative refraction occurs when kx = 0 and
sin2 θL = ε3/(ε1 + ε3), where the propagation direction of the light is given
by φ = arctan(Sx/Sz) = arctan[−δ/(2β)] for each side, and the amount of
bending is measured by φL − φR = 2arctan[−δL/(2β)]. For any given θL (as
defined in Fig. 1.2), the maximum amount of bending is 2θL for positive crys-
tal (ε3 > ε1 and 0 < θL < π/2) or 2(θL−π/2) for negative crystal (ε1 > ε3 and
π/2 < θL < π), when either ε1/ε3 → ∞ or ε3/ε1 → ∞. Figure 1.3 shows an
experimental demonstration of amphoteric refraction with minimal reflection
loss realized with a YVO4 bicrystal [31], and Fig. 1.4 compares the experimen-
tal and theoretical results for the relationship between the angles of incidence
and refraction (note that θL = −π/4 and θR = π/4 are assumed) [31].

As a special case of the general discussion with 0 < θL < 90◦ and 0 <
θR < 90◦, zero reflection and/or negative refraction can also be realized at
an isotropic–anisotropic interface [32–36]. Assuming µ = 1, zero reflection
occurs when εL =

√
ε1

Rε3
R, which actually is the condition for the so-called

perfectly matched layer [67]. The interface of air and a uniaxial crystal with

BA

BA

Fig. 1.3. Images of light propagation in a YVO4 bicrystal. The upper panel shows
an example of normal (positive) refraction, whereas the lower panel shows abnormal
(negative) refraction. Note that no reflection at the bicrystal interface is visible to
the naked eye. The interface is illuminated by inadvertently scattered light. The
arrows indicate the orientations of the optical axes (A – left, B – right)
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Fig. 1.4. Comparison of theoretical predictions with experimental data. Amphoteric
refraction in a YVO4 bicrystal is divided into three regions: one negative (θR/θL < 0)
and two positive (θR/θL > 0). The data points are measured with a 532-nm laser
light, and the curve is calculated with the refractive index of the material (no =
2.01768 and ne = 2.25081). Inset: the full operation range of the device

its optical axis oriented at a nonzero angle to the interface normal is perhaps
the simplest interface to facilitate negative refraction, as illustrated in Fig. 1.1.
However trivial it might be, it is a genuine phenomenon of negative refraction.

If µR < 0 and the εR tensor is indefinite or not positive definite, while
allowing 0 < θL < 90◦ and 0 < θR < 90◦, we will have more unusual situations
of refraction. Again, all parameters on the left-hand side are assumed positive,
and, for simplicity, the left medium is assumed to be isotropic. If both εR

1 < 0
and εR

3 < 0, then the results are qualitatively similar to that of the isotropic
case discussed above. However, when εR

1 < 0 but εR
3 > 0, or when ε1

R > 0
but εR

3 < 0, we thus have γR < 0; and by appropriately choosing θR to have
βR > 0, we have

√
γR(βRµR − k2

x) =
√
|γR| (βR |µR| + k2

x), which indicates
that all the real kx components are propagating modes, and therefore, there
will be no evanescent wave. For these cases, (S−

z )R > 0, and it is always
possible to choose a value of θR (e.g., θR = 45◦ when ε3

R > |εR
1 | or θR = −45◦

when ε1
R > |εR

3 |) such that δR < 0; and thus, (S−
x )R > 0 for any kx, which

means that there will be no negative refraction for kx > 0, in spite of the
medium being left handed (because of µR < 0), although refraction is negative

for kx < 0. Zero reflection only occurs at kx = 0, when εL =
√∣∣εR

1 εR
3

∣∣ and

(εµ)L = |βµ|R.
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In summary, having an LHM is neither a necessary nor a sufficient con-
dition for achieving negative refraction. The left-handed behavior does not
always lead to evanescent wave amplification. It may not always be possible
to match the material parameters to eliminate the interface reflection with
an LHM. The double-negativity lens proposed by Veselago and Pendry repre-
sents the most-stringent material requirement to achieve negative refraction,
zero reflection, and evanescent wave amplification. For a uniform medium,
the left-handed behavior can only be obtained with at least one component
of the ε or µ tensor being negative: ε1 for the E-polarized wave and µ1 for the
H-polarized wave, if limited to materials with uniaxial symmetry [63]. How-
ever, once one of the components of either the ε or µ tensor becomes negative
so as to have left-handed behavior, then at least one of the components of the
other tensor needs to be negative to have propagating modes in the medium,
and possibly to have evanescent wave amplification (as discussed above for
the H-polarized wave and in the literature for the E-polarized wave [65]).

Analogous to the discussion of negative refraction in the photonic crys-
tal, one could consider the propagation of a ballistic electron beam in a real
crystal. It is perceivable that one could discuss how various types of electronic
band structures might bend the electron beam negatively, in a manner similar
to the negative “refraction” discussions for the photonic crystal [40]. Again,
a domain twin interface, as the one shown in Fig. 1.5 for example, appears
to be a simple case that can give rise to negative refraction and zero reflec-
tion for a ballistic electron beam [31]. It is a genuine refraction when light
goes through such an interface; but for the electron beam, it is fundamen-
tally a phenomenon of diffraction. Complex structures of this type of domain
twin could be of great interest for both optics and electronics. Examples of
such super structures created by stacking domain twins in a linear manner

[001]

[110]

[111][111]

50 Å

Fig. 1.5. A typical high-resolution cross-sectional transmission electron microscopy
(TEM) image of domain twin structures frequently observed in CuPt-ordered III–V
semiconductor alloys (e.g., GaInAs). The ordering directions are [111] (left) and
[111] (right). The vertical dashed line indicates the twin boundary
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(a) (b)

[001]

[110]

40Å

Fig. 1.6. High-resolution cross-sectional TEM images of ordered GaInP alloys: (a)
double-variant ordered structure with quasiperiodic stacking of domain twins along
the [001] direction, and (b) single-variant ordered domain

can be found in the literature, though not in the context of negative refrac-
tion. For instance, a zig-zag structure found in the so-called “sculptured” thin
film is ideally a periodic one-dimensional stacking of the domain twins. Zero
reflection for the TM polarized electromagnetic wave was indicated in the lit-
erature (for normal incidence [68] and arbitrary angle of incidence [69]). For
electronics, an unusual type of semiconductor superlattice, termed an “ori-
entational superlattice,” was found in spontaneously ordered semiconductor
alloys, and their electronic structures and optical properties were also inves-
tigated [70–72]. Figure 1.6 shows a quasiperiodic structure of ordered domain
twins, which is an orientational superlattice, in a Ga1−xInxP alloy [72].

1.3 Conclusion

Negative refraction, as an interesting physical phenomenon, can be observed
in a number of circumstances possibly facilitated by very different physical
mechanisms. The interest in this field has provided great opportunities for
fundamental physics research, material developments, and novel applications.
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