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Magnetoexcitons in anisotropic semiconductors
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Using a numerical technique, we have calculated the exciton ground state in a uniaxially anisotropic
semiconductor with and without the presence of a magnetic field. Numerical results are given for the
exciton energy level as a function of magnetic field for a wide range of anisotropy parameters
0.001<ab<1000 and effective field 0<g<10. We have demonstrated that by fitting the
experimental data of the field dependence, in a proper field range, with the field aligned in the
direction of the uniaxis, the exciton in plane reduced massm' and the parameterab can be obtained
simultaneously. As an example, magnetoluminescence of ordered GaInP2 measured in the field
rangeB<14 T is analyzed by applying this method. Analytical formulas have been found for
calculating exciton binding energy and the related variational parameters for a well-known method
with trial function f (x,y,z)5(pa2b)21 exp@2A(x21y2)/a21z2/b2#. Various approximate
approaches for calculating the exciton binding energy and the magnetoexciton states are discussed
and compared. ©1998 American Institute of Physics.@S0021-8979~98!02301-9#
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I. INTRODUCTION

Excitonic states in an anisotropic semiconductor a
their behavior in a magnetic field have been investiga
extensively in the past forty years. In a semiconductor w
cubic symmetry, the anisotropy for a direct exciton occ
mainly from the anisotropy of the effective mass tensor
the valence band. Exciton states in cubic semiconduc
with and without a magnetic field have been studied by,
examples, Dresselhaus,1 Altarelli and Lipari,2 Swierkowski,3

Cho et al.,4 and Lipari and Altarelli.5 Degeneracy combined
with the anisotropy causes a strong mixing of states
results in a complicated magnetic field dependence of
excitonic states.2–5 On the other hand, excitonic states
semiconductors with uniaxial symmetry are relatively easy
deal with. When a large valence band splitting exists in
semiconductor, for instance, in crystals like CdS6 and CdSe7

with Wurtzite symmetry, in semiconductor quantum we
and superlattices8 or in cubic semiconductors subjected to
high uniaxial stress along the@001# or @111# direction, an
ellipsoid energy dispersion is a good approximation for
electronic states neark50. Thus, excitonic states are th
solutions of a single effective mass equation with anisotro
masses and maybe anisotropic dielectric constants as
We refer to this type of anisotropic exciton as a simple
isotropic exciton, compared to the more complicated sit
tions in cubic semiconductors.

For a simple anisotropic exciton or a similar problem f
shallow impurities, there have been various perturba
methods proposed for calculating its eigenstates. For
stances, trial-wave function or basis-expansion methods w
used by Kittel and Mitchell,9 Kohn and Luttinger,10

Faulkner,11 and Baldereschi and Diaz,12 and a method of
solving a set of coupled radial equations was used by B
eckx et al.13

a!Electronic mail: yzhang@nrel.nrel.gov
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For the simple anisotropic exciton in a magnetic fie
aligned along the symmetric axis, the effects of the anis
ropy and field are in fact similar in terms of symmetry. Pe
turbative methods have been used to obtain the exciton s
in a weak field for materials with rather weak anisotrop
like CdS by Hopfield and Thomas6 and CdSe by Wheele
and Dimmock.7 Variational methods have also been used
solving the problem, for instance, a one-parameter t
Hamiltonian method by Daiet al.14 which is only good for a
weak field and weak anisotropy, and a basis-expans
method by Twardowski and Jinter15 which is more accurate
for a strong field and excited states than for a weak field
ground state. Very recently, Lee and Lee16 proposed a
method to treat the anisotropic magnetoexciton as an iso
pic one with an effective interaction constant, when the
isotropy is not too strong.

The motivation of this work is to interpret the magn
toluminescence data of ordered III–V alloys, GaInP2 in
particular,17 in an intermediate field range in which the pe
turbative approach is not valid any more. The orderi
changes the crystal structure from zinc-blende to CuPt,
causes an effective mass anisotropy in the conduction b
and a splitting of the degenerate valence band. As a g
approximation, both the conduction band and the topm
valence band have ellipsoid energy dispersions.18 Also, it is
of a general interest to understand the magnetoexciton
an arbitrary anisotropy and magnetic field, but without t
complicated valence band structure of cubic semiconduct

For an isotropic exciton, its magnetic field dependen
has been very well studied, in the pioneering work of Ya
et al.19 using a trial function with a form exp@2az22b(x2

1y2)# and in work by others using improved or more soph
ticated trial functions, for instance, Larsen,20 Pokatilov and
Rusanov,21 and Gerlachet al.,22 and using other techniques
perturbation methods by Ruderet al.,23 Pavlov–Verevkin
and Zhilinskii,24 and Cohen and Herman,25 solving multiple
radial equations by Cabibet al.,26 and basis-expansion meth
8/83(1)/448/7/$15.00 © 1998 American Institute of Physics
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ods by Aldrich and Greene27 and Makado and McGill.28 For
the isotropic magnetoexciton, the numerical results for
perimentally accessible fields are usually tabulated,19–28

which makes it possible to use them for analyzing the
perimental results. However, for the anisotropic magneto
citon, such kinds of tables are not available, to the best of
knowledge. On the other hand, in the early works,6,7 as well
as in our recent work,17 in order to obtain the exciton re
duced masses in the directions parallel and perpendicula
the uniaxis, measurements including the excited states an
with two field orientations were required. Strictly speakin
it is not possible to obtain the two reduced masses by a
lyzing the two-field data because the field dependence of
exciton state is not just simply a function of the two reduc
masses, but rather of the individual electron and hole ef
tive masses. Only in the low-field limit, can the diamagne
shifts be described by the relatively simple functions wh
contain only the two reduced masses.6,7,17Very often, such a
low-field limit gives a very small field range in which dia
magnetic shift is at first rather small and second could
affected by the exciton localization caused by certain fl
tuations. Also, it is not trivial to decide in what field rang
the formalism for the diamagnetic shift is a good approxim
tion.

In this work, we choose to extend the numerical meth
of Ref. 26 for the isotropic exciton to the anisotropic excito
We are able to achieve an accuracy of four or five dig
below the decimal point in calculating the exciton bindi
energy or its magnetic shift in the anisotropy range 0.0
<ab<1000 and in the field range 0<g<10 ~ab andg are
defined below!, at least for the exciton ground state. We w
demonstrate how to obtain the exciton reduced mass and
anisotropy parameterab simultaneously by fitting the mag
netoluminescence data to the theoretical results. A few fa
simple analytical formulas are found for the long existi
approximate approaches for the exciton binding ener
Also, the applicability and the accuracy of various appro
mations are discussed.

II. FORMALISM AND RESULTS

A. Magnetic field B 50

The electron-hole relative motion of an excitonic sta
can be described by the following equation in a ‘‘simp
anisotropic-exciton’’ model:1,6,29

S 2
\2

2m'
S ]2

]x2 1
]2

]y2D2
\2

2m i

]2

]z2

2
e2

Ae'e i~x21y2!1e'
2 z2D c5Ec, ~1!

wherem'(e') and m i(e i) are exciton reduced masses~di-
electric constants! in the directions perpendicular and para
lel to the symmetry axis, respectively. In Eq.~1!, the zero of
the energy has been chosen as the band gap.

If we define a mean dielectric constante05A(e'e i), a
mass anisotropya5m' /m i , a dielectric anisotropyb
5e' /e i , and a transformationz85zAa, use the effective
J. Appl. Phys., Vol. 83, No. 1, 1 January 1998
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RydbergR'5m'e4/(2\2e0
2) and the effective Bohr radius

a'5\2e0 /(m'e2) as units for energy and length, respe
tively, Eq. ~1! becomes

S 2
]2

]x22
]2

]y22
]2

]z822
2

Ax21y21abz82D c5Ec. ~2!

Transforming Eq.~2! to spherical coordinates (r ,u,w),
we have7

S 2
]2

]r 22
2

r

]

]r
1

L2

r 22
2

rA12~12ab!cos2 u
D c5Ec,

~3!

whereL is the angular momentum operator.
The Hamiltonian in Eq.~2! has an axial symmetry abou

z as well as an inversion symmetry, therefore both thez
component of angular momentumm and parity are good
quantum numbers. We are only interested in the eigenst
with m50 and even parity, because only these states h
nonzero matrix elements for band-edge optical transitio
As in Ref. 26, we can expressc(r ) as a combination of
spherical harmonisYl m with evenl andm50;

c~r ,u!5 (
even l

F l ~r !Yl 0~u,w!. ~4!

Substituting Eq.~4! into Eq. ~3!, we obtain a set of coupled
differential equations for the radial functionsF l (r ):

(
even l 8

H l l 8F l 8~r !5EFl ~r !, ~5!

where

H l l 85S 2
d2

dr22
2

r

d

dr
1

l ~ l 11!

r 2 D d l l 82
2

r
ul l 8 , ~6!

and

ul l 85^Yl 80u
1

A12~12ab!cos2 u
uYl 0&.

To solve Eq.~5! numerically, we follow Ref. 26 by in-
troducing a transformation

r 5
kj

~12j!
,

with 0,j,1. The scale factork can be adjusted to give
good representation of the range where the wave functio
important~typically k is chosen between 0.4 to 2!.

Defining

f l ~j!5jF l ~r !,

Eq. ~5! becomes

(
even l 8

F S 2
~12j!4

k2

d2

dj2 1
~12j!2l ~ l 11!

k2j2 D d l l 8

2
2~12j!

kj
ul l 8G f l 85E fl , ~7!

which is a set of differential equations forf l (j)’s. We, then,
solve these equations by using a finite difference meth
449Zhang, Mascarenhas, and Jones
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TABLE I. Exciton binding energy~in unit R'! as a function of anisotropy parameterab.

(ab)1/3 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

This work 3.229 99 2.713 59 2.321 40 2.011 58 1.760 39 1.553 03 1.379 56 1.232 86 1.107 67 1.0
Ref. 13 ••• 2.694 2.321 2.0116 1.7604 1.553 1.3796 1.2329 1.1077 1.000
Ref. 11 3.17 2.69 2.31 2.01 1.759 1.553 1.380 1.233 1.108 1.000
Ref. 10 3.123 2.667 2.300 2.002 1.756 1.551 1.379 1.233 1.108 1.00

(ab)21/3 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

This work 0.025 20 0.098 11 0.199 55 0.315 08 0.435 94 0.556 93 0.675 09 0.788 78 0.897 20 1.0
Ref. 13 ••• 0.0949 0.1992 0.3150 0.4358 0.5568 0.6750 0.7888 0.8972 1.00
Ref. 10a 0.0240 0.0962 0.1976 0.3135 0.4348 0.5562 0.6747 0.7886 0.8971 1.00

aCalculated with Ref. 10’s method forab.1.
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where a central-five point formula is used for the seco
derivative.26 To achieve an accuracy of (1024– 1025)R' for
the eigenvalue of Eq.~7! in the range 0.2>(ab)1/3<5, the
maximuml needed isLmax520, and the segment number
N560 with an appropriately chosen scale factork. For
(ab)1/350.1 or 10, the maximuml needed is 26. Smallerk
is better for the case of stronger anisotropy, i.e., stron
localization, and the higher excited states prefer the us
largerk. For the 1s ground state, the exciton binding energ
as a function ofab is listed in Table I, compared with th
results of Refs. 10, 11, and 13. Our results are more accu
for the cases of strong anisotropy.

B. Magnetic field BÞ0

The perturbative Harmoltonian due to the magnetic fi
can be written as

dHB5
g2

4
~x21y2!, ~8!

where the effective fieldg5 1
2\vc /R' , andvc5eB/(cm')

is the in-plane cyclotron frequency. Since we are only int
ested inm50 states, the term associated with the ordin
Zeeman effect has been ignored. The matrix elements t
added to Eq.~7! are

~dHB! l l 85
g2

4
r 2^Yl 80usin2 uuYl 0&. ~9!

For the isotropic exciton, Ref. 26 found that a value
Lmax512 is adequate to give the four-digit accuracy forg
<5. In our calculation, we find that a maximuml of 20 can
give an accuracy of (1024– 1025)R' for the ground state
energy in a range of 0.2>(ab)1/3<5 and 0>g<10. Only
for the most extreme cases of (ab)1/350.1 or 10, a maxi-
mum l of 26 is needed. For the 1s ground state, the shift o
the energy level as a function of variablesab andg is listed
in Table II.

III. DISCUSSION AND APPLICATION

A. Binding energy of a simple anisotropic exciton

When the anisotropy is weak,u(12ab)u!1, the eigen-
value of Eq.~7! can be obtained perturbatively by using t
450 J. Appl. Phys., Vol. 83, No. 1, 1 January 1998
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wave-function of an isotropic exciton. A series expansi
was given by Wheeler and Dimmock.7 Here, we give a
closed form as:

E512
2 arcsinA12ab

A12ab

52S 11
12ab

3
1

3~12ab!2

20

1
5~12ab!3

56
1O@~12ab!4# D . ~10!

A slightly different approximation was used by Hopfield an
Thomas:6 introducing an averaged reduced mass

1

m0
5

1

3 S 2

m'

1
1

m i

e'

e i
D ,

and rewriting Eq.~1! by substituting form0 , the first order
perturbation yields

E52
3

21ab
52S 11

12ab

3
1

~12ab!2

9

1
~12ab!3

27
1O@~12ab!4# D . ~11!

Equations~10! and ~11! explain why (ab)1/3 was found to
be a good parameter to describe the anisotropy effect on
binding energy by Faulkner.11 In fact, simply taking
(ab)21/3 as the binding energy, the result is similar to Eq
~10! and ~11!:

E52
1

~ab!1/352S 11
12ab

3
1

2~12ab!2

9

1
14~12ab!3

81
1O@~12ab!4# D . ~12!

While Eqs.~10! and ~11! underestimate the binding energ
for instance, by less than 2% and 4%, respectively, forab
50.5, Eq.~12! overestimates the binding energy by less th
2%. The anisotropy in materials like CdS, CdSe, and p
tially ordered GaInP2 are usually weaker thanab50.5.

On the other hand, the variational method proposed
Kittel and Mitchell,9 Kohn and Luttinger,10 and Faulkner11

can cover a much larger range of anisotropy. Even
Zhang, Mascarenhas, and Jones
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TABLE II. ~a! Energy shift~in unit R'! of the exciton ground state as a function of effective magnetic fieldg for anisotropy parameterab,1.
h-
e

an
in

of
(ab)1/350.2 (ab50.008), their result only differs from
Broeckxet al.,13 by 1% for the ground state. While the met
ods of Refs. 9, 10, and 11 give a similar accuracy, the form
is much easier to use. Besides, we have now obtained
lytical formulas for calculating the variational parameters
the former method. The trial function for Eq.~2! can be
written as

f ~x,y,z8!5A 1

pa2b
exp@2A~x21y2!/a21z82/b2#.

~13!

We find that with this trial function, the expectation value
the Hamiltonian in Eq.~12! can be given analytically, and
the exciton ground state energy is
J. Appl. Phys., Vol. 83, No. 1, 1 January 1998
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E5minS 2

3a2 1
1

3b22

2 arctanAa22b2ab

b2ab

Aa22b2ab
D . ~14!

The minimization conditions:]E/]a50 and]E/]b50 lead
to the following equation for the parameterQ:

AQ2Aab

Aab

21AabQ

Q212
5arctanAQ2Aab

Aab
, ~15!

and the binding energy and parametersa andb are related to
one of the two solutions of Eq.~15!, Q0 , which minimizes
the energy:
451Zhang, Mascarenhas, and Jones
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TABLE II. ~b! For ab.1.
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E52
3Q0~21AabQ0!

Aab~Q0
212!2

, ~16!

a5
~ab!1/4~Q0

212!

3AQ0

, ~17!

b5
~Q0

212!

3Q0
. ~18!

The other trivial solution of Eq.~15! is Q5Aab that does
not minimize the energy. In fact, this solution leads to t
approximation of Eq.~11!.

Figure 1 compares the exciton binding energy as a fu
tion of ab according to Eqs.~10!, ~11!, and~14!. The result
of Eq. ~14! differs from that of the Eq.~7! ~not shown in Fig.
1! by less than 0.5% forab50.1 or 10.
452 J. Appl. Phys., Vol. 83, No. 1, 1 January 1998
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B. Diamagnetic shift of a simple anisotropic exciton

In the low-field region ofg!1, the shift of the exciton
state, defined asdE5E(B)2E(B50) ~the so-called dia-
magnetic shift!, can be evaluated perturbatively asdE
5^C0udHBuC0&, whereC0 is the eigenstate ofB50.

Applying the approximation of Wheeler and Dimmock7

the anisotropy only shifts the energy level, but has no eff
on the diamagnetic shift, assuming the same values ofm' nd
e0 . On the other hand, with the averaged-mass approxi
tion of Hopfield and Thomas,6 the diamagnetic shift is

dE5
g2

2 S 3

21ab D 22

. ~19!

Equation~19! indicates that the diamagnetic shift becom
smaller~larger! if ab is smaller~larger! than 1, assumingm'
Zhang, Mascarenhas, and Jones
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and e0 are kept the same. When 2u(12ab)1/3!1, the an-
isotropy has very little effect on the diamagnetic shift. Wh
for the exciton binding energy, the approximation of Ref.
given by Eq.~11!, is able to give a result with 4% accurac
for ab50.5; for the diamagnetic shift, Eq.~19! gives a
larger error of 9% forg50.1.

When the anisotropy is not so weak, Lee and Lee16 re-
cently proposed a way of calculating the magnetic shift
introducing an effective coupling constant for the Coulom
interaction. Let

e* 45e4 minS 2
2

3a22
1

3b2 1

2 arctanAa22b2ab

b2ab

Aa22b2ab
D ,

~20!

then the anisotropic magnetoexciton is treated as an isotr
one with a reduced mass ofm' and the effective Coulomb
interactione* 2. This approach may give rather accurate
sults when both the anisotropy and field are not too stro
For instance, forab50.5 andg51.0, the error fordE is
about 4% if the isotropic equation with an effective intera
tion is solved numerically. However, the variational a
proach used by the authors16 was less accurate~the error
would be 12% for this case!. Figure 2 shows a compariso
for ab50.1 between the two approaches: directly solvi
the anisotropic magnetoexciton with the given anisotro
and solving the isotropic magnetoexciton with the effect
interaction.

Notice that, because in the low-field region a depe
dence ofdE5c(m' ,ab)B2 is always a good approximatio
~c is a constant!, we can not deduce two parametersm' and
ab independently by fitting experimental data to the theo
althoughc(m' ,ab) can be a complicated function of pa
rametersm' andab. Nevertheless, it has been shown that
the low-field region by analyzing data including the excit
states and/or with different field directions, one can inde
obtain the two parameters independently.6,7,17

FIG. 1. Exciton binding energy as a function of anisotropy parameterab,
evaluated by three approximations:K-M /K-L ~Refs. 9 and 10!, W-D ~Ref.
7!, andH-T ~Ref. 6!.
J. Appl. Phys., Vol. 83, No. 1, 1 January 1998
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Also notice that in the high-field limit of the Landau-
level region, the energy level is independent of the aniso
ropy parameter:

E5S n1
1

2D e\B

m'c
. ~21!

Thus, the experimental data in the intermediate field regio
is expected to be more useful for obtaining the two param
etersm' and ab simultaneously. To illustrate this, Fig. 3
showsdE as a function ofg for three typicalab values, as
well as the ratios ofdE betweenab50.5 andab51.0 and
betweenab50.1 andab51.0. As we can see, in the inter-
mediate field region, the ratio has a relatively strong depe
dence on the field, which implies that the energy shift
more sensitive to the anisotropy parameter.

As an example, Fig. 4 shows a fitting of the experiment
data to our numerical calculation for a partially ordere
GaInP2 sample. If the fitting is performed in the field region

FIG. 2. A comparison of diamagnetic shift as a function of the field betwee
two approaches: real coupling directly solving the anisotropic magnetoex
ton with the given anisotropy and effective coupling solving the isotrop
magnetoexciton with the effective interaction.

FIG. 3. Diamagnetic shift as a function of the field for anisotropy paramet
ab51.0, 0.5, and 0.1, and the ratio of the shift betweenab50.5 and 0.1 to
ab51.
453Zhang, Mascarenhas, and Jones
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B>6 T, the yielded parameters arem'50.09060.001 and
ab50.5260.06. These values agree well with the resu
obtained by fitting the experimental data of the low-fie
region (B<6 T) in two field directions to perturbative
formulas:17 m'50.091560.0005 andab50.6160.16. The
error bar forab is relatively large, which is because of th
fact that it is a less sensitive parameter in determining
exciton level.

IV. CONCLUSION

We have applied a numerical technique to calcul
eigenstates of an anisotropic magnetoexciton. Numerica
sults are tabulated for the range of 0.1,ab1/3,10 and 0
<g<10, which can be directly used for fitting experimen
data to obtain the in-plane exciton reduced mass and
anisotropic parameterab. Various approximations are dis
cussed and compared in terms of their applicable regio
We have demonstrated that by only measuring and analy
the magnetic shift of the exciton ground state with the fi
aligned in the uniaxis, both the in-plane reduced mass
the anisotropic parameters can be obtained.

FIG. 4. Experimental and fitting results for an ordered GaInP2 alloy.
454 J. Appl. Phys., Vol. 83, No. 1, 1 January 1998
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