Magnetoexcitons in anisotropic semiconductors
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Using a numerical technique, we have calculated the exciton ground state in a uniaxially anisotropic
semiconductor with and without the presence of a magnetic field. Numerical results are given for the
exciton energy level as a function of magnetic field for a wide range of anisotropy parameters
0.001=aB=<1000 and effective field € y=<10. We have demonstrated that by fitting the
experimental data of the field dependence, in a proper field range, with the field aligned in the
direction of the uniaxis, the exciton in plane reduced massind the parameter can be obtained
simultaneously. As an example, magnetoluminescence of ordered Gakdsured in the field
rangeB=<14T is analyzed by applying this method. Analytical formulas have been found for
calculating exciton binding energy and the related variational parameters for a well-known method
with trial function f(x,y,z)=(ma%b) ! exd—(x*+y?)/a’+7z?/b?]. Various approximate
approaches for calculating the exciton binding energy and the magnetoexciton states are discussed
and compared. €1998 American Institute of Physids$S0021-897¢98)02301-9

I. INTRODUCTION For the simple anisotropic exciton in a magnetic field
o ) ) ) _ aligned along the symmetric axis, the effects of the anisot-
‘Excitonic states in an anisotropic semiconductor andopy and field are in fact similar in terms of symmetry. Per-
their behavior in a magnetic field have been investigatedyrpative methods have been used to obtain the exciton states
extensively in the past forty years. In a semiconductor with, 5 weak field for materials with rather weak anisotropy,
cubic symmetry, the anisotropy for a direct exciton occursje cqs by Hopfield and Thom&sand CdSe by Wheeler

mainly from the anisotropy of the effective mass tensor ofyng pimmock. Variational methods have also been used for
the valence band. Exciton states in cubic semiconductor§o|ving the problem, for instance, a one-parameter trial

with and without a magnetic field have been studied by, forHamiItonian method by Dast al* which is only good for a
examples, Dresselhatgltarelli and Lipari? Swierkowski?  \veak field and weak anisotropy, and a basis-expansion

Choet al,” and Lipari and Altarell?: Degeneracy combined ethod by Twardowski and Jinféwhich is more accurate
with the anisotropy causes a strong mixing of states ang, 5 strong field and excited states than for a weak field and
results in a complicated magnetic field dependence of th@round state. Very recently, Lee and Eferoposed a

. . -5 . . .
excitonic state$> On the other hand, excitonic states in pethod 1o treat the anisotropic magnetoexciton as an isotro-
semiconductors with uniaxial symmetry are relatively easy tQ,;c gne with an effective interaction constant, when the an-
deal with. When a large valence band splitting exists in 3sotropy is not too strong.

semiconductor, for instance, in crystals like €d®d CdSé
with Wurtzite symmetry, in semiconductor quantum wells
and superlatticésor in cubic semiconductors subjected to @ particular'’ in an intermediate field range in which the per-

high uniaxial stress along th@01] or [111] direction, an  ryative approach is not valid any more. The ordering

ellipsoid energy dispersion is a good approximation for the;hanges the crystal structure from zinc-blende to CuPt, and
electronic states ned(=0. Thus, excitonic states are the ¢, ,se5 an effective mass anisotropy in the conduction band
solutions of a single effective mass equation with anisotropic,,4 4 splitting of the degenerate valence band. As a good

masses and maybe anisotropic dielectric constants as Weﬁpproximation, both the conduction band and the topmost

We refer to this type of anisotropic exciton as a simple anyajence band have ellipsoid energy dispersinsiso, it is
isotropic exciton, compared to the more complicated situa

; f ) X of a general interest to understand the magnetoexciton with
tions in cubic semiconductors.

: . X ) o an arbitrary anisotropy and magnetic field, but without the
For a simple anisotropic exciton or a similar problem for oo hjicated valence band structure of cubic semiconductors.
shallow impurities, there have been various perturbative g, an isotropic exciton, its magnetic field dependence

methods proposed for calculating its eigenstates. For iNgac peen very well studied, in the pioneering work of Yafet
stances, trial-wave function or basis-expansion methods werg ;19 using a trial function with a form exp-aZ—b(x2

. . . 0 .
used b¥11 Kittel and M|tc_hel?, KO-Z{% and  Luttingef, +y?)] and in work by others using improved or more sophis-
Faulkner,” and Baldereschi and Diaz,and a method of icateq trial functions, for instance, Lars&hPokatilov and

solving a set of coupled radial equations was used by BroRusanov’-,l and Gerlactet al,22 and using other techniques:

The motivation of this work is to interpret the magne-
toluminescence data of ordered llI-V alloys, GalniA

13
eckxetal. perturbation methods by Rudet al,?® Paviov—Verevkin
and Zhilinskii>* and Cohen and Herman solving multiple
dElectronic mail: yzhang@nrel.nrel.gov radial equations by Cabiét al,?® and basis-expansion meth-
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ods by Aldrich and Greefiéand Makado and McGif® For ~ RydbergR, = u, €*/(2%2€3) and the effective Bohr radius
the isotropic magnetoexciton, the numerical results for exa, =#%¢,/(u, €%) as units for energy and length, respec-
perimentally accessible fields are usually tabuldted® tively, Eq. (1) becomes

which makes it possible to use them for analyzing the ex- ( 2 2 a2 )

m_ (?yZ 9z'2 W) y=E¢. (2

Transforming Eq(2) to spherical coordinates (6, ¢),
havé

perimental results. However, for the anisotropic magnetoex-
citon, such kinds of tables are not available, to the best of our
knowledge. On the other hand, in the early wotkss well
as in our recent work’ in order to obtain the exciton re-
duced masses in the directions parallel and perpendicular o
the uniaxis, measurements including the excited states and/or ( P2 29 L2 2
with two field orientations were required. Strictly speaking, — T3 -t
it is not possible to obtain the two reduced masses by ana- gt rar rt ryl-(1-ap)cos ¢
lyzing the two-field data because the field dependence of the
exciton state is not just simply a function of the two reducedwherelL is the angular momentum operator.
masses, but rather of the individual electron and hole effec- The Hamiltonian in Eq(2) has an axial symmetry about
tive masses. Only in the low-field limit, can the diamagneticz as well as an inversion symmetry, therefore both the
shifts be described by the relatively simple functions whichcomponent of angular momentum and parity are good
contain only the two reduced mas$€s’Very often, such a quantum numbers. We are only interested in the eigenstates
low-field limit gives a very small field range in which dia- with m=0 and even parity, because only these states have
magnetic shift is at first rather small and second could beéonzero matrix elements for band-edge optical transitions.
affected by the exciton localization caused by certain flucAs in Ref. 26, we can expresg(r) as a combination of
tuations. Also, it is not trivial to decide in what field range spherical harmoni¥ ,,, with even/ andm=0;
the formalism for the diamagnetic shift is a good approxima-
tion. Y(r,0)= 2 F (DY0(0,0). )

In this work, we choose to extend the numerical method even /
of Ref. 26 for the isotropic exciton to the anisotropic exciton. Substituting Eq(4) into Eq. (3), we obtain a set of coupled

We are able to achieve an accuracy of four or five digitsdifferential equations for the radial functiofs (r):
below the decimal point in calculating the exciton binding

-
()

energy or its magnetic shift in the anisotropy range 0.001 > H, . F, . (r)=EFAr) (5)
< @B=<1000 and in the field range0y<10 (aB and y are even/’ '

defined beloy, at least for the exciton ground state. We will where

demonstrate how to obtain the exciton reduced mass and the

anisotropy parameter simultaneously by fitting the mag- oo d_z_ 2 i+ [(1+1) s 2 5
netoluminescence data to the theoretical results. A few fairly 7770 dr? rodr r2 v Uerns 6)

simple analytical formulas are found for the long existing
approximate approaches for the exciton binding energyf.i
Also, the applicability and the accuracy of various approxi-
mations are discussed. Uy ={Y /g

nd

1Y 0)-

1
V1—(1—apB)cos 6
To solve Eq.(5) numerically, we follow Ref. 26 by in-
troducing a transformation
k&
Ta-¢

with 0<¢é<1. The scale factok can be adjusted to give a
good representation of the range where the wave function is

Il. FORMALISM AND RESULTS

A. Magnetic field B=0

The electron-hole relative motion of an excitonic state r

can be described by the following equation in a “simple-
anisotropic-exciton” modet:®2°

2 [ 2 h? 92 important(typically k is chosen between 0.4 t9.2
24, W“La_yz _Z_Mﬁ Defining
.2 f(&)=EF A1),
- =Ey, (1) Eg.(5) becomes
\/ELE(X2+)/2)+€EZZ>¢ ’ & 4 )
1-9* d®  (1-9*/(/+1

where i, (e,) and (¢ are exciton reduced massedi- (—( kzg) FJF( g)kz (2 ) S/
electric constanjsin the directions perpendicular and paral- even ¢ ¢
lel to the symmetry axis, respectively. In EG), the zero of 2(1-¢)
the energy has been chosen as the band gap. T TkE u,,.|f,=Ef, 7)

If we define a mean dielectric constagg=J(€, €)), a
mass anisotropya=pu, /u;, a dielectric anisotropyS  which is a set of differential equations foy(&)’s. We, then,
=€, /¢, and a transformatioz’ =z/«, use the effective solve these equations by using a finite difference method,
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TABLE |. Exciton binding energyin unit R, ) as a function of anisotropy parametes.

(aB)¥? 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
This work 3.229 99 2.71359 2.321 40 2.01158 1.760 39 1.553 03 1.379 56 1.232 86 1.107 67 1.000 00
Ref. 13 2.694 2.321 2.0116 1.7604 1.553 1.3796 1.2329 1.1077 1.0000
Ref. 11 3.17 2.69 2.31 2.01 1.759 1.553 1.380 1.233 1.108 1.000
Ref. 10 3.123 2.667 2.300 2.002 1.756 1.551 1.379 1.233 1.108 1.000
(aB)~ 1R 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
This work 0.025 20 0.098 11 0.199 55 0.31508 0.43594 0.556 93 0.67509 0.78878 0.897 20 1.000 00
Ref. 13 0.0949 0.1992 0.3150 0.4358 0.5568 0.6750 0.7888 0.8972 1.0000
Ref. 1¢ 0.0240 0.0962 0.1976 0.3135 0.4348 0.5562 0.6747 0.7886 0.8971 1.0000

&Calculated with Ref. 10's method farg> 1.

where a central-five point formula is used for the secondvave-function of an isotropic exciton. A series expansion
derivative®® To achieve an accuracy of (16-10"%)R, for  was given by Wheeler and DimmoékHere, we give a
the eigenvalue of Eq7) in the range 0.2 (aB)Y<5, the  closed form as:

maximum/’ needed id ,,,=20, and the segment number is

N=60 with an appropriately chosen scale factar For E—1— 2arcsin/1—apf

(aB)Y3*=0.1 or 10, the maximura’ needed is 26. Smalldr J1-ap

is better for the case of stronger anisotropy, i.e., stronger )

localization, and the higher excited states prefer the use of _ _(1+ 1-ap i 3(1—ap)

largerk. For the I ground state, the exciton binding energy 3 20

as a function ofe is listed in Table I, compared with the 5(1— ap)®

results of Refs. 10, 11, anq 13. Our results are more accurate + 5—g+0[(1—aﬂ)4] _ (10)
for the cases of strong anisotropy.

A slightly different approximation was used by Hopfield and

Thomas® introducing an averaged reduced mass
B. Magnetic field B#0

1 1/2 1c¢€
The perturbative Harmoltonian due to the magnetic field —= 3 (— +— —L),
can be written as Mo oo B€
. and rewriting Eq.(1) by substituting foru,, the first order
5|_|B:Z (X2+y?), (8)  perturbation yields
3 1- 1-apB)?
where the effective field=3hw./R, , andw.=eB/(cu,) E=— = —(1+ B + (1~ap)
is the in-plane cyclotron frequency. Since we are only inter- 2+ap 3 9
ested inm=0 states, the term associated with the ordinary (1-ap)?
. . 4
Zeeman effect has been ignored. The matrix elements to be + 7 TO0l-ap)]|. (11

added to Eq(7) are
) Equations(10) and (11) explain why @B)*® was found to
(SH B)//,:y_ r2(Y ,1o|Sir? 6]Y ). (99  be agood parameter to describe the anisotropy effect on the
4 binding energy by Faulknét. In fact, simply taking
For the isotropic exciton, Ref. 26 found that a value of(@B8)” ' as the binding energy, the result is similar to Egs.
Lma=12 is adequate to give the four-digit accuracy for (10 and(11):

<5. In our calculation, we find that a maximwhof 20 can 1 1-aB 2(1-ap)?
i 5
give an accuracy of (I0f—10 °)R, for the ground state E=——ap=—|1+ 3 + 5
energy in a range of 0:2(aB)*<5 and 0= y=<10. Only (af)
for the most extreme cases ok 8)°=0.1 or 10, a maxi- 141-apB)®
mum/ of 26 is needed. For theslground state, the shift of + T+O[(1—aﬂ)4] : (12
the energy level as a function of variablkeg andy is listed
in Table Il. While Egs.(10) and(11) underestimate the binding energy,

for instance, by less than 2% and 4%, respectively,d@r
=0.5, Eq.(12) overestimates the binding energy by less than
11l. DISCUSSION AND APPLICATION 2%. The anisotropy in materials like CdS, CdSe, and par-
tially ordered GalnpRare usually weaker thans=0.5.
On the other hand, the variational method proposed by
When the anisotropy is weal(1— a8)|<1, the eigen- Kittel and Mitchell? Kohn and Luttinger? and Faulkner*
value of Eq.(7) can be obtained perturbatively by using the can cover a much larger range of anisotropy. Even for

A. Binding energy of a simple anisotropic exciton
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TABLE Il. (a) Enerav shift(in unit R.) of the exciton around state as a function of effective maanetic fidior anisotroov parameter3<1.

(aB)?

y 0.1 02 03 0.4 0.5 0.6 0.7 08 09 1.0
0.05 000029 000036 000044 000052 000062 000072 000084 000096 000110  0.00125
0.1 000118 000145 000175 000209 000247 000288 000334 000383 000437 000495
0.2 000470 000578 000698 000832 000979 001140 001316 001505 001708 001924
0.3 001054 001293 001550 001852 002174 002523 002898 003297 003720  0.041 63
0.4 001865 002281 002743 003250 003799 004389 005016 005677 006366 007079
05 002895 003533 004236 004999 005820 006693 007610 008565 009550  0.10558
0.6 004138 005036 006017 007075 008202 009388 010622  0.11894 013192  0.14507
0.7 00558 006777 008070 009452 010911 012433 014002  0.15605 017227  0.18855
08 007230 008745 010376 012107 013918 015792 017709 019650 021600 023543
0.9 009061 010925  0.12919 015017 017196  0.9433 021705 023990 026269 028526
1.0 011072 013308 015682 018162 020721 023330 025961 028591 031198 033766
11 013253 015879  0.18650 021525 024472 027458 030451 033425 036358 039233
12 015597 01831 021810 025090 028431 031796 035151 038469 041725  0.44902
13 018096 021551 025151 028841 032580 036326 040043 043702 047277 050753
1.4 020743 024631 028659 032767 036906 041034 045111 049107 052998  0.56766
1.5 023531 027863 032326 036854 041396 045904 050339 054669 058871 062928
1.6 026454 031237 036141 041093 046037 050925 055715 060376 064885  0.69225
1.7 029505 034747 040096 045473 050820 056085 061228 066216 071027  0.756 45
1.8 032678 038385 044182 049986 055735 061376  0.66868 072179 077287 082180
1.9 035969 042146 048394 054624 060773 066788 072626 078255 083657 088819
2.0 039371 046023 052723 059380 065928 072314 078493 084439 090130 095557
22 0.4649 054103 061712 069220 076560 083678 090532 097096 103353 109297
2.4 0.5401 062586 071104 079450 087582 095421 102935 110102 116910 123355
26 0.6189 071437 080863 090058 098954 107501 115662 123419 130762 137694
2.8 0.7011 080627 090956 100983 110642 119885 128680 137012 144877 152281
3.0 0.7864 090127 101355  LI2206 122617 132545 141960 150854 159228 167092
32 0.8745 099916 112036 123702 134855 145455 155479 164922 173792 182105
3.4 0.9654 109971 122977 135449 147333 158594 169215 179197 188552 197301
3.6 1.0588 120275 134160 147429 160033 171944 183151 193660 203488 212664
38 11546 130812 145567 159624 172938 185489 197271 208296 218589 22818l
40 12526 141566 157184 172019 186034 199214 211561 223093 233839  3.43839
45 15065 169317 187058 203801 219526 234237 247954 260711 272555 283536
5.0 1772 198170 217986 236582 253962 270149 285182 299113 312003 323918
5.5 2,047 227984 249827 270226 289210 306824 323124 338182 352074  3.64883
6.0 2332 258646 282471 304627 325168 344162 361686 377829 392685 406349
6.5 2.624 290063 315827 339696 361751 382084 400791 417981 433766 448253
7.0 2.923 322158 349819 375360 398890 420523 440378 458582 475263 490543
7.5 3.229 354865 384385 411561 436528 450427 480396 499583 517131 533178
8.0 3.541 388129 419472 448247 474617 498749 520802 540943 559332 576120
8.5 3.858 421902 455034 485374 513116 538450 461560 582628 601834 61934l
9.0 4181 456142 491031 522905 551980 578498 602637 624609 644609  6.628 15
9.5 4,508 490815 527429 560808 591206 618864 644008 666860 687635  7.06520

10.0 4.839 525886 564198 599054 630740 650522 685649  7.09361 730890  7.50437

(aB)*=0.2 («=0.008), their result only differs from a2—b2ap

Broeckxet al,'3 by 1% for the ground state. While the meth- 5 2 arcta TE

1
ods of Refs. 9, 10, and 11 give a similar accuracy, the former E=min =+ oo
is much easier to use. Besides, we have now obtained ana- 3a® 3b Va‘—b‘ap
lytical formulas for calculating the variational parameters in

the former method. The trial function for E42) can be The minimization conditionssE/da=0 anddE/db=0 lead

(14)

written as to the following equation for the paramet@r
1
f(x,y,z')= \/—Wazb exf — V(x*+y?)/a?+z'?/b?]. [Q—Vap 2+ VaBQ o [TV (15
2 - b
(13) vap Q°+2 vapg

We find that with this trial function, the expectation value of and the binding energy and paramet@@ndb are related to
the Hamiltonian in Eq(12) can be given analytically, and one of the two solutions of Eq15), Qq, which minimizes
the exciton ground state energy is the energy:
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TABLE Il. (b) For aB>1.

(a1
y 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.05 0.03227 0.015 29 0.008 00 0.004 89 0.003 37 0.002 53 0.002 01 0.001 67 0.001 42 0.001 25
0.1 0.07619 0.045 54 0.027 60 0.018 12 001292 0.009 85 0.007 89 0.006 57 0.005 64 0.004 95
0.2 0.169 0.1203 0.0841 0.0608 0.0460 0.0363 0.029 76 0.025 15 0.021 78 0.01924
0.3 0.264 0.2030 0.1523 0.1163 0.0917 0.0740 0.062 33 0.053 43 0.046 76 0.041 63
0.4 0.361 0.2897 0.2268 0.1797 0.1457 0.1210 0.102 92 0.089 34 0.078 93 0.070 79
0.5 0.458 0.3787 0.3054 0.2482 0.2055 0.1737 0.149 65 0.13127 0.116 94 0.105 58
0.6 0.556 0.4693 0.3868 0.3205 0.2697 0.2310 0.201 21 0.178 05 0.159 76 0.14507
0.7 0.654 0.5611 0.4703 0.3957 0.3373 0.2920 0.256 67 0.228 83 0.206 57 0.188 55
0.8 0.753 0.6357 0.5554 0.4731 0.4076 0.3560 031535 0.282 93 0.256 78 0.235 43
0.9 0.851 0.7471 0.6419 0.5523 0.4801 0.4226 0.376 75 0.339 88 0.309 90 0.28526
1.0 0.950 0.8410 0.7294 0.6331 0.5545 0.4913 0.440 47 0.399 27 0.365 55 0.337 66
11 1.048 0.9354 0.8178 0.7152 0.6305 0.5619 0.506 20 0.460 79 0.423 41 0.392 33
1.2 1.147 1.0302 0.9070 0.7983 0.7079 0.6340 0.573 68 0.524 19 0.483 23 0.449 02
1.3 1.246 1.1254 0.9968 0.8824 0.7865 0.7075 0.642 72 0.589 25 0.544 80 0.507 53
1.4 1.345 1.2208 1.0872 0.9674 0.8661 0.7823 0.713 14 0.655 81 0.607 94 0.567 66
15 1.444 1.3165 1.1781 1.0531 0.9467 0.8582 0.784 81 0.723 70 0.672 50 0.629 28
1.6 1.543 1.4125 1.2695 1.1394 1.0282 0.9351 0.857 60 0.792 82 0.738 36 0.692 25
1.7 1.642 1.5086 1.3613 1.2264 1.1104 1.0129 0.931 41 0.863 05 0.805 40 0.756 45
1.8 1.742 1.6049 1.4534 1.3139 1.1933 1.0916 1.006 15 0.934 30 0.873 53 0.821 80
19 1.841 1.7014 1.5459 1.4019 1.2769 1.1710 1.08175 1.006 48 0.942 65 0.888 19
2.0 1.940 1.7980 1.6386 1.4903 1.3611 1.2511 1.158 14 1.079 53 1.012 70 0.955 57
22 2.139 1.9917 1.8250 1.6684 1.5309 1.4132 1.313 06 1.227 98 1.155 33 1.09297
2.4 2.338 2.1858 20122 1.8479 1.7026 1.5774 1.470 51 1.379 21 1.300 95 1.233 55
2.6 2.537 2.3803 2.2003 2.0287 1.8759 1.7437 1.630 18 1.532 89 1.449 22 1.376 94
2.8 2.736 2.5752 2.3891 2.2105 2.0506 19116 1.791 79 1.688 74 1.599 83 1.522 81
3.0 2.935 2.7704 2.5785 2.3932 2.2266 2.0810 1.955 15 1.846 52 1.752 53 1.670 92
32 3.134 3.9658 2.7684 2.5768 2.4037 2.2518 2.120 07 2.006 04 1.907 13 1.821 05
3.4 3.333 3.1615 2.9588 2.7611 2.5817 2.4238 2.286 40 2.167 13 2.063 44 197301
3.6 3.532 3.3574 3.1496 2.9461 2.7607 2.5969 2.45401 2.329 66 222131 2.126 64
3.8 3.731 3.5535 3.3409 3.1317 2.9405 2.7711 2.62279 2.493 50 2.380 61 2.281 81
4.0 3.931 3.7497 3.5325 3.3179 3.1211 2.9461 2.792 65 2.658 54 2.541 24 2.438 39
4.5 4.429 4.2410 4.0129 3.7855 3.5753 3.3873 3.221 46 3.075 82 2.94792 2.835 36
5.0 4928 47332 4.4950 4.2558 40332 3.8329 3.655 41 3.498 90 3.360 97 3.239 18
5.5 5.427 5.2260 4.9784 47282 4.4940 42822 4.093 70 3.926 88 3.779 41 3.648 83
6.0 5.927 5.7193 5.4631 5.2025 49573 4.7346 4.53570 4.359 07 4.202 49 4.063 49
6.5 6.426 6.2132 5.9487 5.6784 5.4228 5.1898 4.980 92 479491 4.629 61 4.482 53
7.0 6.925 6.7075 6.4353 6.1557 5.8902 5.6474 5.428 97 523397 5.060 30 4.905 43
7.5 7.425 7.2022 6.9226 6.6342 6.3594 6.1071 5.879 53 5.675 89 5.494 16 533178
8.0 7.924 7.6973 7.4105 7.1138 6.8300 6.5686 6.33232 6.120 35 5.9309 5.76120
8.5 8.424 8.1926 7.8991 7.5944 7.3019 7.0319 6.787 13 6.5671 6.3701 6.193 41
9.0 8.924 8.6882 8.3883 8.0759 77751 7.4967 7.243 75 7.0160 6.8117 6.628 15
9.5 9.424 9.1841 8.8779 8.5581 8.2494 7.9628 7.702 03 7.4667 7.2554 7.065 20
10.0 9.924 9.6802 9.3680 9.0411 8.7246 8.4303 8.16183 7.9192 7.7011 7.504 37
3Qy(2+ \/a_ﬁQo) B. Diamagnetic shift of a simple anisotropic exciton
N JaB(Q2+2)? (16) In the low-field region ofy<<1, the shift of the exciton
0 state, defined as$E=E(B)—E(B=0) (the so-called dia-
(aB)YY Q§+ 2) magnetic shift, can be evaluated perturbatively a¥
a= a3l (17 =(W,|8Hg|W,), whereW, is the eigenstate dB=0.
Qo Applying the approximation of Wheeler and DimmoCk,

(Q2+2) the anisotropy only shifts the energy level, but has no effect

= 30, (19 on the diamagnetic shift, assuming the same valugs, ofid
0

€o. On the other hand, with the averaged-mass approxima-
The other trivial solution of Eq(15) is Q= /a8 that does tion of Hopfield and ThomaS$the diamagnetic shift is

not minimize the energy. In fact, this solution leads to the
approximation of Eq(11). Y

2 -2

3
2+apB

Figure 1 compares the exciton binding energy as a func- o= 2
tion of @B according to Eqs(10), (11), and(14). The result
of Eq. (14) differs from that of the Eq(7) (not shown in Fig. Equation(19) indicates that the diamagnetic shift becomes
1) by less than 0.5% foa3=0.1 or 10. smaller(large) if aB is smaller(largep than 1, assuming

(19
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FIG. 1. Exciton binding energy as a function of anisotropy paramegr FIG. 2. A comparison of diamagnetic shift as a function of the field between

evaluated by three approximatiors:M/K-L (Refs. 9 and 1 W-D (Ref. two approaches: real coupling directly solving the anisotropic magnetoexci-

7), andH-T (Ref. 6. ton with the given anisotropy and effective coupling solving the isotropic
magnetoexciton with the effective interaction.

and ¢, are kept the same. Whenr(2— «8)1/3<1, the an- Also notice that in the high-field limit of the Landau-

isotropy has very little effect on the diamagnetic shift. While level region, the energy level is independent of the anisot-

for the exciton binding energy, the approximation of Ref. 6,ropy parameter:

given by Eq.(11), is able to give a result with 4% accuracy 1\ eB

for «8=0.5; for the diamagnetic shift, Eq19) gives a E=|n+= )

larger error of 9% fory=0.1. 2) p.cC
When the anisotropy is not so weak, Lee and'fee-  Thus, the experimental data in the intermediate field region

cently proposed a way of calculating the magnetic shift byis expected to be more useful for obtaining the two param-

introducing an effective coupling constant for the Coulombeters ., and ¢ simultaneously. To illustrate this, Fig. 3

21

interaction. Let showsSE as a function ofy for three typicalag values, as
—— well as the ratios oBE betweena8=0.5 andaB=1.0 and
5 arcta [a“—bapf betweena=0.1 andaB=1.0. As we can see, in the inter-
w4 2 1 b2apB mediate field region, the ratio has a relatively strong depen-
etr=erminl — o3zt Ja—bZap » dence on the field, which implies that the energy shift is

more sensitive to the anisotropy parameter.
(20) As an example, Fig. 4 shows a fitting of the experimental

then the anisotropic magnetoexciton is treated as an isotropféata to our numerical calculation for a partially ordered
one with a reduced mass ML and the effective Coulomb GalnB sample. If the fitting is performed in the field region
interactione* 2. This approach may give rather accurate re-
sults when both the anisotropy and field are not too strong.
For instance, fora3=0.5 andy=1.0, the error forSE is
about 4% if the isotropic equation with an effective interac-
tion is solved numerically. However, the variational ap- ,,
proach used by the authdfswas less accuratéhe error
would be 12% for this cageFigure 2 shows a comparison 1 g,
for a3=0.1 between the two approaches: directly solving &
the anisotropic magnetoexciton with the given anisotropy¥ o7
and solving the isotropic magnetoexciton with the effective %
interaction. 2
Notice that, because in the low-field region a depen-
dence ofSE=c(u, ,aB)B? is always a good approximation 05
(c is a constant we can not deduce two parametgrs and
afB independently by fitting experimental data to the theory, o4
althoughc(u, ,aB) can be a complicated function of pa-
rametersu, andapB. Nevertheless, it has been shown that in
the low-field reg,lon k_)y analyglng d_ata !nCIUdmg the e,XCItedFIG. 3. Diamagpnetic shift as a function of the field for anisotropy parameter
states and/or with different field directions, one can indeed,g=1.0, 0.5, and 0.1, and the ratio of the shift betweeg=0.5 and 0.1 to
obtain the two parameters independefitfy’ aB=1.

B e e I

E(of=1)
L

SE(1s)R

3 06
u
w

N N N TN T YT T N M T T [ N

T T T T T O T O Y S
0 1 2 3 4 5

Effective Field y

o

J. Appl. Phys., Vol. 83, No. 1, 1 January 1998 Zhang, Mascarenhas, and Jones 453

Downloaded 18 Jan 2011 to 152.15.183.175. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



ACKNOWLEDGMENTS

3I|l||I||I|||II|IIII|III||||I|||I|I|ll|l|l|||
" ] We thank Kyu-Seok Lee and Peter Ernst for the valuable
i ] discussions, and Kyu-Seok Lee and Elhang Lee for making
L * experimental data 4 their manuscript available prior to publication. This work
. fitting curve 7 was supported by the US Office of Energy Research, Mate-
2 | p, =0.090 i rial Science Division of DOE under Contract No. DE-AC36-
= r of =0.52 . 83CH10093.
£ L i
b 1j —_
r S 7 1G. Dresselhaus, Phys. Rel06, 76 (1957).
B _® 1 2M. Altarelli and N. O. Lipari, Phys. Rev. B, 1733(1974.
o B H/./’/' 1 3L. Swierkowski, Phys. Rev. B0, 3311(1974.
TN T Y 00 T T A I 0 A O A O O I I A AR B O 4K.Ch0,S.Suga,W.Dreybrodt,andF.WiIImann,Phys.Reﬂ.lBlSlZ
0 2 4 6 8 10 12 14 16 (1975.
Lo SN. O. Lipari and M. Altarelli, Solid State Commu83, 47 (1980.
Magnetic Field (T) 6J. J. Hopfield and D. G. Thomas, Phys. R222, 35 (1961).
’R. G. Wheeler and J. O. Dimmock, Phys. R&%, 1805(1961).
FIG. 4. Experimental and fitting results for an ordered GalalRy. 8R. L. Greene and K. K. Bajaj, Phys. Rev.3, 6498 (1985.

9C. Kittel and A. H. Mitchell, Phys. Rev6, 1488(1954.
0w, Kohn and J. M. Luttinger, Phys. Re98, 915(1955.

B=6T, the yielded parameters afe =0.090+0.001 and ‘'R. A. Faulkner, Phys. Re\84, 713(1969.
2. Baldereschi and M. G. Diaz, Nuovo Cimento@B, 217 (1970.

aff=0.52-0.06. These values agree well with the reSl'"t513J. Broeckx, P. Clauws, and J. Vennik, J. Phys. C:Solid State RBy511
obtained by fitting the experimental data of the low-field (1984 ' ' o o

region B=6T) in two field directions to perturbative 4C. M. Dai, J. H. Pei, and D. S. Chuu, PhysicalB0, 317 (1990.
formulas?” 4, =0.0915+0.0005 anda3=0.61+0.16. The . A. Twardowski and J. Jinter, Phys. Status SolidlBQ 47 (1982.

16
. . . . K.-S. Lee and E. Lee, J. Korean Phys. S2@. 824 (1996.
error bar foraﬁ IS relatlvely Iarge’ which is because of the 7p. Ernst, Y. Zhang, F. A. J. M. Driessen, A. Mascarenhas, E. D. Jones, C.

fact that it is a less sensitive parameter in determining the geng, F. Scholz, and H. Schweizer, J. Appl. P8s.2814 (1997.

exciton level. 18y, Zhang and A. Mascarenhas, Phys. Re\5B 13 162(1995.

19y, Yafet, R. W. Keyes, and E. N. Adams, J. Phys. Chem. Sdljds37
(1956.

IV. CONCLUSION 20p, M. Larsen, J. Phys. Chem. Solid, 271 (1968.

. . . 21 7 H
We have applled a numerical technlque to calculate ELQZQ Pokatilov and M. M. Rusanov, Sov. Phys. Solid StHde 2458
eigenstates of an anisotropic magnetoexm}%n. Numerical resg Gerlach, D. Richter, and J. Pollmann, Z. Phys5@ 419 (1987.
sults are tabulated for the range of €.&8°<10 and O  23H. Ruder, G. Wunner, H. Herold, and M. Reinecke, J. Phys. B:At. Mol.
< y=<10, which can be directly used for fitting experimental , Phys.14, L45 (1981).

; i ; 4V. B. Pavlov-Verevkin and B. I. Zhilinskii, Phys. Letf5A, 279 (1980.
data to obtain the in pIane exciton reduced mass and th‘%M. Cohen and G. Herman, J. Phys. B:At. Mol. Phg4, 2761(198J).

anisotropic parametes/3. Various approximations are dis- 2p_ capip, E. Fabri, and G. Fiorio, Solid State Commen1517 (1973);
cussed and compared in terms of their applicable regions.Nuovo Cimento B10, 185 (1972.

We have demonstrated that by only measuring and anaIyzinicéC- Aldrich and R. L. Greene, Phys. Status Solidd8 343 (1979.

the magnetic shift of the exciton ground state with the field .G Makado and N. C. McGill, J. Phys. C:Solid State Pig. 873

. . L . 986.
a“gneq n th? uniaxis, both the m'plan? reduced mass anglr, gassaniand G. P. Parravicifilectronic States and Optical Transitions
the anisotropic parameters can be obtained. in Solids(Pergamon, Oxford, 1975p. 188.
454 J. Appl. Phys., Vol. 83, No. 1, 1 January 1998 Zhang, Mascarenhas, and Jones

Downloaded 18 Jan 2011 to 152.15.183.175. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



