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Recently there has been a great deal of interest in an unusual category of material,
that is, a material that exhibits negative refractive index or more generally negative
group velocity. Perhaps the most immediate application of this type of material is In
an area known as total and negative refraction, which may potentially lead to many
novel optical devices. The reason that the phenomenon of total and negative refraction
has become so interesting to the physics community is also due largely to the noticn
that this phenomenon would never occur in conventional materials with positive re-
fractive index. It turns out that total and negative refraction can be realized even in
natural crystalline materials or in artificial materials {e.g. photonic crystals) without
negative {effective) refractive index. In this brief review, after providing a brief historic
account for the resecarch related to finding materials with negative group velocity and
achieving negative refraction, we discuss the three primary approaches that have yielded
experimental demonstrations of negative refraction, in an effort to clarify the underiying
physics involved with each approach. A brief discussion on the subwavelength resclution
application of the negative (effective) refractive index material is also given.

Keywords: Negative refraction; reflectionless; left-handed media; anisotropic media;
photonic crystals; spatial dispersion.

1. Introduction
1.1. Negative refraction and total refraction

Refraction has been used for over two millennia to “steer” light in applications such
as lenses and prisms. Refraction of light is a phenomenon that normally refers to the
bending of light at the interface of two uniform and transparent media. If both media
are isotropic, refraction obeys the well-known Snell’s law: n;sinf; = ngsinfy. ny
and no are the refractive indices of the two media, and if #; is the angle of incidence,
#, will be the refraction angle. As is common wisdom, if n; > 0 and ng > 0, the
incident and refracted beam remain on the opposite side of the interface normal,
that is, if 0 < 8; < m/2, one expects 0 < 8, < 7/2. We may refer to such refraction
as normal or positive refraction. Also accepted as common wisdom is that refraction
occurs inevitably with reflection, that is, if ny # ng, in order to achieve refraction,
the transmission suffers from a finite reflection loss. A well-known exception is that
when the angle of incidence equals Brewster angle, tanfy, = na/ny, and light is
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polarized within the plane of incidence, reflection diminishes. These properties are
generally considered to be qualitatively valid even for anisotropic media, although
the relevant equations may become more complex.

In this brief review, we would like to discuss two issues that have been the central
interests of many recent studies on the refraction of electromagnetic waves. These
studies have brought out some unusual or non-trivial properties of this phenomenon.
One is the so-called negative refraction, i.e. the refracted beam remains on the same
side of the interface normal as the incident beam (if #; > 0, then 82 < 0). The other
one is the so-called total refraction (i.e. zero reflection), which occurs for any angle of
incidence, as opposed to the well-known phenomenon of total reflection. Our main
goal is to illustrate the similar and dissimilar aspects of the different approaches that
have been proposed or utilized to achieve negative refraction and total refraction in
terms of their underlying physics. A brief discussion will be given on one of the key
applications: achieving a subwavelength resolution using a material with a negative
(effective) refractive index. Because of the limited scope of this brief review, we will
not attempt to cover all the areas or literature relevant to the study of negative
refraction, but only mention those most closely related to the central issues to be
dealt with in this article.

1.2. Brief history of left-handed medium and negative refraction

The group velocity of a wave, v (w, k) = dw/dk, is often used to describe the direc-
tion and the speed of its energy propagation. For an electromagnetic wave, strictly
speaking, the energy propagation is determined by the Poynting vector S. However,
for a quasi-monochromatic wave packet in a medium without external sources and
with minimal distortion and absorption, the direction of § coincides with that of
vg.! The angle between v, and k is of significance in distinguishing two types of
media: when the angle is acute or k- v, > 0, it is said to be a right-handed medium
(RHM); when the angle is obtuse or k - v, < 0 (sometimes simply referred to as
group velocity reversal), it is said to be a left-handed medium (LHM).? Unusual
physical phenomena are expected to emerge either in an individual LHM (e.g. a
reversal of the group velocity and a reversal of Doppler shift)? or jointly with a
RHM (e.g. negative refraction that occurs at the interface of a LHM and RHM).
The effect that has received most attention lately is in fact the negative refraction
at the interface of a RHM and LHM. Although the work of Veselago? has been
the one most frequently referred to for representing the early effort on the negative
refraction study, the discussion of negative refraction of light and other waves was
first seen in a 1945 paper® by Mandelstam, as well as in one of his lecture notes.*
The dispersion curve of an optical phonon branch in a crystal lattice was given as an
example of such unusual media. The possibility of achieving group velocity reversal
for an clectromagnetic wave, when the spatial dispersion of the crystal is taken
into account {i.e. the permittivity tensor £;; being k-dependent), was discussed by
Agranovich and Ginzburg in their book published in 1966.! With spatial dispersion,
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the angle between k and v, can be anywhere between 0 and «. For example, if the
exciton mass [or the center of mass motion is negative, an additional solution of
the exciton-polariton with negative group velocity can be obtained.! In his 1968
paper,? Veselago pointed out that refraction at the interface of one medium with
£ > 0 and g > 0 and another with —¢ and —u would not only be negative, but
also reflectionless. Nevertheless, the idea of a negative refractive index with simul-
taneously negative permittivity £ and permeability y, as well as the consequence of
negative group velocity, had actually been mentioned earlier by Pafomov in 1959.5
The material with both £ < 0 and p < 0 is actually only a special case of materi-
als with group velocity reversal. In the literature, the phenomena associated with
negative group velocity have often been related to negative refractive index or the
corresponding material is referred to as negative index material (NIM), but the
terminology “negative group velocity” is more generally suited to include LHMs
for which the refractive index cannot be defined in the conventional way, namely
no= \/s_p.l It is interesting to note that there is a non-trivial connection between the
spatial dispersion effect described by Agranovich and Ginzburg and the negative
index discussed by Veselago. Normally, one refers the spatial dispersion effect to
the k-dependence of ¢ in a crystal due to higher order effects beyond the dipole ap-
proximation {e.g. gyrotropy in a crystal lacking inversion symmetry) or due to the
coupling of the light with an elementary excitation of the crystal (e.g. polariton).!
However, in the so-called (E, D, B) approach, compared to the conventional
(E, D, H, B) approach, the case of Veselago (¢ < 0 and p < 0) turns out to be a
special case of the spatial dispersion with a generalized permittivity tensor £(w, k).b
In fact, as pointed out by Landau and Lifshitz,” one has to take the (E, D, B) ap-
proach (i.e. g = 1) in the high-frequency region (e.g. optical frequencies), because
u # 1 loses its usual physical meaning there. Therefore, the scheme of Veselago,
£ =y = —1, is not physically sound for optical or higher frequencies.®7 Also, in the
(E, D, B) approach, negative group velocity can only be obtained by including the
spatial dispersion effect, since the k-independent term of &(w, k) is simply &{w).®
In addition to the extraordinary properties of a LHM on its own? and the sug-
gestion by Pendry of making a perfect lens using a LHM,® the interest in negative
refraction is also largely due to this intriguing phenomenon itself, since not until
recently?1" has it been generally believed that refraction involving RHMs could
only be positive.!! Although experimental verification of the group velocity rever-
sal for elastic waves in crystals (referred to as backward waves) was reported by
Burlii and Kucherov in 1977,'2 and the backward wave behavior has also been
studied for microwaves or millimeter waves in one-dimensional devices,'3 the first
experimental demonstration of the effect of LHM on electromagnetic wave was
performed only recently by Shelby et al!! in 2001 through negative refraction of
microwaves in a narrow frequency window with metamaterials {arrays of metallic
split-rings and rods, SRRs). The work of Shelby et al. together with the perfect lens
implication of Pendry has inspired a great deal of interest in negative-refraction-
related research. We have seen, on the one hand, the debate on the validity of the
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experimental result,!? as well as the realizability of the perfect lens,!®16 and the
further confirmation of the experiment with the SRR-type metamaterials;'” on the
other hand, other different approaches, using either photonic crystals or anisotropic
media, for achieving negative refraction with!8721 and without®1%2272 relying on
LHM. For each different approach that is capable of producing negative bending, it
is sometimes rather confusing as to which is the primary physical cause responsible
for the observed phenomena or how the light-matter interaction plays its role in
the propagation of the incident electromagnetic wave inside the medium. We will
next examine each approach in an attempt to reveal the underlying physics that is
ultimately responsible for manifesting the negative bending of light.

2. Different Approaches for Achieving Total and Negative Refraction
2.1. Coupled waves

From a “pedestrian” point of view, refraction is simply the bending of light when
it passes through the boundary of two transparent and uniform media, implying
that light and the material are inert to each other. Strictly speaking, light-matter
interaction is inevitable in any medium. Fortunately, the interaction is usually weak
enough in the transparent spectral region away from the frequencies of elementary
excitations of the material (e.g. plasmons, phonons, excitons, etc.) so that it can be
treated perturbatively, which yields dielectric response functions e(w, k) = £(w) and
p{w. k) =~ p(w). However, when the frequency of an electromagnetic wave is near
that of an elementary excitation in a crystalline material, the interaction is often
strongly enhanced, and the waves inside the medium are then the eigenstates of
the combined system of the crystal and electromagnetic field. When such strongly
coupled waves are encountered, the concept of refraction needs to be generalized
to embrace more complex phenomena involving light—matter coupling. The strong
coupling typically leads to the so-called two-mode behavior. In a metal, the rele-
vant frequency is the electron plasma frequency wep. The coupling results in two
waves?5: one photon-like and the other charge-density-wave-like, and a real dielec-
tric constant (under high-frequency approximation)

W

glwym1 -2, 1
()~ 1-2 1)
For w < wep, the region with strong coupling, &(w) is negative and the medium is
nontransparent. In an ionic crystal, the coupling of light with optical phonons, a
polariton, also leads to the two-mode behavior, one photon-like and one phonon-

like, with a real dielectric constant
foo (t‘-’% —w?)

e(w) = w?r — w2

(2)

where wrp and wjy, are transverse and longitudinal frequencies of the polariton, and
£oo is the high-frequency dielectric constant.?®27 Again, for wr < w < wy, (the
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region with strongest coupling), €(w) is negative and the medium is nontrans-
parent. Another frequently encountered example of the two-mode behavior is an
exciton-polariton resulting from the coupling between excitons and photons with
one photon-like and one exciton-like mode.?”?®* The dielectric function near the
exciton resonance is given by

2 2
(AJL - LU'VF

£(w) = o {1 + ; (3)

wi + ak? — w? — fyw
where a = hwr/M for excitons, M is the exciton mass, and « is a damping fre-
quency. There will also be a frequency region in which e{w) is negative. These cou-
pled waves can be used to produce negative refraction in at least two very different
ways, which we will elaborate below.

The first, a rather extraordinary approach,®!! is to hybridize the dielectric re-
sponse of the electron plasma mentioned above and the dielectric response of a
magnetic plasma with

2

plw)=1- 22, @

where wyp, is the magnetic plasma frequency. The central idea is to obtain an ef-
fective negative refractive index in the overlapping spectral region of e{w) < 0 and
@{w) < 0 in the otherwise nontransparent region of the individual material, so as
to demonstrate negative refraction in the way suggested by Veselago. Despite the
success in achieving negative refraction,'!"!” the metamaterials always seem to be
strongly absorptive. Although the negative effective index is believed to be due to
the combination of media with £ < 0 and g < 0,%° the reality could be more com-
plex than the intuitive understanding.’® It is worth pointing out an important and
fundamental distinction between the metamaterial and a real material. Despite the
size and spacing of the components in the metamaterial being much smaller than
the wavelength of light, the metamaterial is primarily described by Maxwell’s equa-
tions, whereas the real material needs to be described primarily by Schrédinger’s
equation. In reality, the metamaterial is a photonic crystal with its periodicity
much smaller than the wavelength of light, but much larger than the atomic scale.
Although with greater complexity, the metamaterial is conceptually very similar to
the so-called “form birefringence” that has been recognized for decades.!

The second approach is to explore the spatial dispersion effect that may lead
to a negative group velocity, as suggested by Agranovich and Ginzburg.! In this
route, negative u is not necessary, and the parameter p could even be irrelevant.®
Spatial dispersion is normally very weak in a crystal, because it is determined by
the parameter a/A, where a is the lattice constant and A is the wavelength in
the medium. However, the role of the spatial dispersion can be strongly enhanced,
when the light frequency is near the resonant frequency of an elementary excitation.
The transverse or lower branch of the exciton-polariton, which is typically exciton-
like for k away from the [" point, is one such possibility if the exciton mass is
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negative (M < 0).1'32 Similarly, one can envision that the lower branch of the
phonon-polariton might also have a negative group velocity if the dispersion of
the transverse optical phonon branch is negative (as a matter of fact, it often is).
Obviously, the success of utilizing this approach to demonstrate negative refraction
requires the damping effect to be sufficiently small. Nevertheless, the polariton
approach is perhaps the most promising way to achieve group velocity reversal in
any uniform medium and optical frequency region. To realize total refraction also,
one has to match the dielectric property of the LHM with that of the RHM across
the interface, which is simply —n and +n for the approach considered by Veselago,
but less straightforward if the LHM based on the spatial dispersion effect is used.
Note that for either one of the above mentioned approaches, the refractive index
?i.e. n = n(w), implying that the matching condition
can at best be realized at discrete frequencies.

must be inherently dispersive,

2.2, Simple waves

By “simple electromagnetic wave”, we refer to the electromagnetic wave in the
transparent spectral region away from the resonant frequency of any elementary
excitation in the medium so that light-matter interaction is mainly manifested
as a simple dielectric function £(w), as in the situation often discussed in crystal
optics,®! of which not only the spatial dispersion is generally negligible, but also the
frequency dependence is usually weak. In this subsection, we will discuss the con-
dition for realizing total and negative refraction for such a simple electromagnetic
wave. Apparently, the conceptually simplest case is an isotropic medium with n < 0
proposed in the paper of Veselago.? Although metamaterials with negative effec-
tive refraction index (n.g < 0) have been demonstrated,'?% a real material with
negative refractive index (n < 0) or simultancously negative £ and p has yet to be
found, if it exists at all. The stringent requirement of both £ < 0 and p < 0 can, in
fact, be relaxed if one is allowed to use anisotropic materials. Limiting to the case
of uniaxial material with its optical axis perpendicular to the medium interface,
Lindell et al..** as well as others,*® have shown theoretically that only one negative
component of the & or p tensor (in the principal coordinate) is sufficient to give rise
to negative refraction. Also, if the optical axis is aligned parallel to the interface,
just one negative component in each € and g will be sufficient.?® However, allowing
the optical axis to be aligned in an arbitrary angle to the interface of a domain
twin of a uniaxial crystal, we have recently found and demonstrated experimentally
that total and negative refraction can be realized, even without any component
of the € or g tensor being negative.l® In such a structure, the total refraction or
transmission is due to an inherent matching of the normal component of the energy
flux across the interface.®” Since the result relies only on the symmetry property
of the twinned structure, the idea is in principle applicable to any frequency. The
matching condition has been further generalized by Liu et al. to be?!

ELAE|A = ELBE|B (5.1)
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and

eﬁl sin? g4 + 5114 cos® Oy = Eﬁé sin? 8yp + 51}3 cos® Bog , (5.2)
where £, and )| are the components of the dielectric tensor for polarization perpen-
dicilar and parallel to the optical axis, and g is the inclination angle of the optical
axis with respect to the interface. One particularly significant value of this general-
ization is that it provides the possibility of realizing total refraction at the interface
of air and a dielectric medium with £, & = 1. Nevertheless, this generalized schene
will be constrained by the frequency dispersion of the dielectric property.

In summary, total and negative refraction can be achieved in a much simpler
way or with much less stringent material requirements than that relying on negative
index or negative group velocity. Therefore, from the application point of view, the
approach making use of the anisotropic dielectric property of a RHM also seems to
be more realistic.193% However, this in no way diminishes the interesting aspects of
the LHM from the fundamental physics point of view.

2.3. Photonic erystals

Negative refraction in photonic crystals seems to have attracted the most attention
amongst all the different approaches. There have been a number of reported experi-
mental demonstrations of negative bending of light using photonic crystals, 2972339
and a great number of theoretical studies in this area.®!®1940749 The pegative
bending reported by Kosaka et al.*® has been explained by Notomi as due to a sim-
ple diffraction effect: the transmitted wave falls into a photonic band gap and one
particular diffracted wave was detected as though it were the refracted wave.'®4!
This type of negative bending is expected to occur with a weakly modulated pho-
tonic erystal,’®*! For a strongly modulated photonic erystal, the Bloch wave not
only cannot be understood as a conventional transmitted wave, but also is typically
composed of multiple G components (G are the lattice vectors in the reciprocal
space).1®41 If the weakly modulated photonic crystal is analogous to the nearly
frec electron approximation in a crystal, the strongly modulated case is then an
analog of the situation encountered in a typical real crystal. Although from the
fundamental perspective, electrons are diffracted in a crystal, the concept of effec-
tive mass or effective mass tensor is often used in the crystal band structure. One
would naturally like to introduce an effective dielectric or refractive index tensor for
the photonic crystal. The essence of the effective mass is that the energy dispersion
of the electron resembles that of a free electron, E(k) = A*k?/(2m*), if a constant
effective mass m* is introduced. With the use of m*, the behavior of the electron
in the crystal is very much like a free electron in many situations. However, in
most cases, the dispersion of the electromagnetic wave in a photonic crystal differs
drastically from that in free space, except for the long wavelength limit. Because of
this, one needs to be careful when introducing the effective refractive index for the
photonic crystal. For simplicity, we consider a typical dispersion relation found in a
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photonic crystal near a band edge: w = wg + ak?, where wy is the frequency at the
band edge. In accordance with the definition in a uniform crystal, the phase refrac-
tive index can be defined as n, = ck/w = ck/(wo + ak?),'® which approaches zero
as k —» 0. It is generally accepted that the energy flow is determined by the group
velocity, vy = dw/dk, in an ideal photonic crystal.’Y In this simple case, v, = 2ak.
A group refractive index has becn introduced to be ng = ¢/v, = ¢/(2ak),'®? which
is divergent as k — 0. We would like point out that neither n, nor ng is appropriate
to serve as the effective index in Snell’s law for determining the trajectory of the
wave inside the photonic crystal. Instead of n, or ng, the effective index, n.s, to
be used in Snell’s law should be introduced through

where 8; is the angle of incidence from vacuum, and 6, is the bending angle deter-
mined by the group velocity of the wave inside the photonic crystal,'®43 assuming
that it is indeed possible to excite only one beam in the photonic crystal. For the
isotropic dispersion, n.s = sgn[a|k/ko, where kg is the wave vector in vacuum,
and k = /|w — wp/a| is the wave vector in the crystal.*® The sign of a, sgn[a],
determines whether or not the bending is positive or negative. In contrast to the
case of an isotropic and uniform medium, even under the assumption of isotropic
dispersion, n,, is different from n.g in the photonic crystal. Nevertheless, the mag-
nitude of n.g is expected to be close to that of n,, when w is close to wq, although
very different from that of n,. In the isotropic case, n.q is found to be independent
of the angle of incidence,*® though is expected to be strongly dependent on the
frequency. It appears that it is indeed possible in certain situations, as for exam-
ple in Ref. 21, to describe the wave propagation in the photonic crystal by using
the effective refractive index rn.p and thus Snell’s law of refraction. However, one
should bear in mind that it is in the same context that the terminology of refrac-
tion is used for the electron beam in a crystal where the electron wave is in fact a
diffracted wave of the crystal lattice. For instance, with this understanding, one can
also discuss negative refraction of a ballistic electron beam in a semiconductor.!?
The choice of whether, when, and how to use the terminology of refraction in these
photonic crystals should only be one of personal preference and a consideration of
convenience rather than a justification for the fundamental nature of the effect to
be refraction or diffraction.

As mentioned above, negative bending can be achieved when the photonic
band has a negative dispersion, which has been discussed theoretically %43 and
demonstrated experimentally.?%?? One common feature for these examples is that
the maximum of the dispersion curve is located at the I' point of the Brillouin
zone (BZ). However, negative refraction has also been studied for a different situ-
ation in which the local maximum is located at a k-point away from the I' point
(typically another high symmetry point in the BZ, e.g. M point).? Negative re-
fraction under this situation is often referred to as “negative refraction without
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negative index”,**? and has been demonstrated experimentally as well 2223 The
two seemingly rather different situations do share one common feature, that is, the
photonic effective mass 9%w/8k;8k; near a local maximum of the dispersion curve is
negative-definite. They in fact rely on the same mechanism that the relative wave
vector of a local frequency maximum is pointed opposite to the group velocity:
q- 8w/8q < 0, where dw/3q is the group velocity, q = k — Ko is the relative wave
vector, and Kj is the wave vector of the local maximum. When the local frequency
maximum is located away from the BZ center T point, one may have k- 9w /dk > 0
{no reversal of the group velocity with respect to k). It is in this sense that there
is no negative effective index.%*? However, q - 8w/8q < 0 (a reversal of the group
velocity with respect to q) could nevertheless be interpreted in terms of a negative
effective index. Assuming the dispersion is given as w(q) = wo(Kg) + aq? near Kg
and the interface normal of air and photonic crystal is along the I'-K direction (a
symmetry axis), an effective refractive index can be introduced in a similar manner
as for Kg = 0: neg = sgnfalg/ky, where g = /|(wo — w)/a|. Despite that neg is
independent of the angle of incidence, there are two subtle constraints that define
the frequency region in which negative refraction can actually occur for any angle
of incidence when « < 0. If the wave vector parallel to the interface is assumed to

be gy, then the perpendicular component ¢ = sgn[a/] \/ [(wg — w)/a| — qﬁ. To allow

the wave with any angle of incidence to transmit into the crystal, |y > ko = w/c
(the maximum value for & in air) must be satisfied. Also, g, should remain real,
Le. |gl £ Vl(wo — w)/a]. The first and second condition will set, respectively, the
upper and lower bound of the frequency region for the so-called “all angle negative
refraction”® for the isotropic case considered here. This analysis is equally appli-
cable for the case of Kg = 0. Although it has been pointed out that the Kg = 0
situation bears more sirnilarity with that of Veselago,*? there is no real fundamental
difference with respect to the underlying physics between the two situations.
However, it is worthwhile to discuss some subtle differences between Ko = 0
and Kg # 0, since the difference has resulted in considerable controversy regarding
whether or not one could consider the negative bending as negative refraction in
the spirit of effective medium description for the Ko # 0 case.®*~%% For the most
often discussed case in the literature, Ky is the M point of a square photonic
lattice. The inherent anisotropy between I'-M and X-M direction leads to a major
complication in achieving negative bending near the M point, first suggested in
Ref. 9, confirmed in Ref. 46, but disputed in Ref. 48. The negative bending is
concluded from analyzing the group velocity near the A point,%4% but the validity
of using the group velocity to describe the energy flow in such photonic crystals
has been challenged lately in Refs. 47 and 48. The primary reason for objecting
to using the group velocity is hinted to be the existence of a partial gap along
the I'-X direction {since usually w(M) > w(X) for the band of interest), although
no convincing argument has been offered. Without actually showing the group
velocity distribution or the equal-frequency contours (EFCs),® it is not clear if the
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disagreement between Ref. 9 and Ref. 48 is due to

(1) the group velocity issue,
(2) the difference in the details of the band structure, or
(3} the accuracy of the numerical simulation of Ref. 48.

As a matter of fact, the partial gap is an inherent feature of any periodic structure
due to the anisotropy and non-spherical (non-circular) shape of the BZ. It is under-
standable that the appearance of the partial gap will lead to the guided wave effect
(i.e. the energy flow tends to bend away from the I X and toward the I'- M direction
when the frequency falls within the partial gap).*® However, intuitively, one would
expect that a large partial gap, which makes the dispersion near the M point more
isotropic, is favorable for obtaining, rather than climinating, the negative bending.
One can envision that a relatively small partial gap or a strong anisotropy may
prevent EFCs near the M point from being convex. It may even be fair to say
that the partial gap is a necessity for negative bending, if one notices that negative
bending is a result of bending the energy flow from the I'-X direction toward the
[-M direction and passing the [-M direction (when the interface normal is chosen
to be I-M). In addition to the group velocity analysis, negative bending has been
demonstrated by direct numerical simulations using FDTD (finite difference time
domain) and other methods,!#19:214841.44 with the exception of Ref. 48, in which
the FDTD simulation failed to yield negative bending. Since there is no compelling
argument indicating that the existence of a partial gap would either eliminate neg-
ative bending or lead to a failure of the group velocity description, the discrepancy
between Refs. 47 and 48 and the others is more likely related to the accuracy of
the numerical simulation rather than the physical issues. Nevertheless, the finite
crystal size typically used in the simulation could lead to some discrepancies be-
tween the directions of energy flow obtained by the numerical simulation and given
by the group velocity, which is an issue that has been investigated for electrons in
crystals (e.g. Ref. 51). It is worth mentioning that phenomena similar to negative
bending for either the refracted or reflected electrons (i.e. the wave vector pointing
in the wrong direction), due to the complexity of Fermi surfaces, was discussed by
Pippard in 1965 for the transmission of electrons at a grain boundary in a metal
crystal.’? The Kg # 0 case for the photonic crystal bears a great similarity with
that for the electrons.

2.4. Subwavelength resolution

The Holy Grail of negative refraction research is a perfect lens, a slab of NIM,
that can overcome the diffraction limit.® Although a perfect lens now appears
unrealistic,'®>3 one would still hope that a limited improvement. of the spatial res-
olution could be achieved with the use of a suitable LHM. Indeed, subwavelength
resolution has been demonstrated in the photonic crystal both theoretically® and

experimentally with n.g =~ —2 (Ref. 23), as well as in a metamaterial.>®> However,
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the realization of such subwavelength resolution requires both the source and detec-
tor to be within the near-field region (i.e. the distance from the slab is < Ag, the free
space wavelength) of the photonic and metamaterial slab. One cannot help but com-
pare this technique with a widely-used technique in fields such as laser spectroscopy
and semiconductor photolithography, which is the so-called solid-immersion lens .56
This technique also relies on the subwavelength focusing in the near-field region
of a dielectric medium with n > 1. Since for both the photonic crystal and the
metamaterial |neg| > 1, it is natural to seek some connection between these new
techniques and the solid-immersion lens approach. In fact, it has been pointed out
that the imaging properties of the photonic crystal slab are primarily due to the
self-collimation and cornplex near-field effect.*®

3. Sumunary

In this brief review, we have offered a concise account of the history of research re-
lated to left-handed materials and their most immediate consequence — total and
negative refraction. The existing efforts for achieving total and negative refraction
can be classified based on two considerations. When considering the building unit
for the material, the size varies from the atomic or molecular scale (e.g. Refs. 10 and
32), the scale much greater than the atomic or molecular scale, but much smaller
than the wavelength of light {e.g. Ref. 11), to that comparable to the wavelength
of light (e.g. in the photonic crystal®!®). When considering the nature of the wave
propagating inside the medium, it can be: a refracted and pure electromagnetic
wave, but without the possibility of realizing group velocity reversal {e.g. Ref. 10);
a refracted but coupled wave with the possibility of realizing group velocity rever-
sal {e.g. Refs. 11 and 32); or a fundamentally diffracted wave appearing as though
negatively refracted (e.g. in the photonic crystal®!®). We have summarized and dis-
cussed the operating principle governing each of the three primary approaches that
have been demonstrated experimentally for realizing left-handed materials and/or
negative refraction, and pointed out the possible connection of the subwavelength
resolution achieved with these unusual materials and the solid-immersion lens. It is
probably fair to say that the original excitement generated by the demonstration of
negative bending was based on the notion that a LHM would be a necessity for re-
alizing negative refraction and also on the implication of making a perfect lens with
a LHM. Ironically, negative (also total) refraction, in the simplest sense, has been
found possible in real crystals. The ideal of making a perfect lens has also turned
out to be unrealistic at best, especially in the optical frequency. However, recent
efforts in negative refraction related studies have provided a strong stimulation for
the related materials as well as fundamental physics research, which one hopes will
result in useful applications beyond perfect lensing.
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