
Linear and nonlinear waves on coating entrance menisci

R. G. Keanini∗, Justin A. Thompson, and Kiran Gona

Department of Mechanical Engineering and Engineering Science

The University of North Carolina at Charlotte

Charlotte, North Carolina 28223-0001

Abstract

The response of optical fiber ribbon entrance menisci to impulsive lateral motion of the ribbon or

coating die is theoretically investigated. In the limit where the characteristic axial coating pressure

increase along the meniscus is much larger than the characteristic gas viscous shear stress along

the meniscus, the meniscus free surface is described by a nonlinear wave equation. Here, surface

discontinuities, analogous to shocks, appear when the spacing between the fiber and die decreases;

shock propagation into the moving fiber in turn is proposed as a potentially important bubble

forming mechanism. By contrast, when spacing between the fiber and die increases, expansion

fans form in the characteristic x-t plane, leading to gradual, rather than abrupt changes in the

meniscus shape. Linear waves are predicted for a range of conditions; in this case, any time-varying
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change in the distance between the die entrance and fiber ribbon propagates at fixed speed, without

distortion, down the meniscus.

Mathematics Subject Classification: 76D33
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Introduction

The formation of bubbles in fiber optic coatings remains a significant, poorly understood problem.

In particular, trapped coating bubbles can produce microbends within the fiber, which in turn

can lead to significant signal attenuation [1–3]. Process features associated with bubble formation

in fiber coatings include process gas entrainment by the fiber as it passes through the coating

reservoir [4–7] and bubble nucleation of dissolved gases during, and subsequent to, the coating

operation [3].

A typical high speed fiber ribbon coating process, depicted schematically in Fig. 1, passes a

ribbonized set of fibers through a coating die, at speeds on the order of 10-30 m/s. An entrance

meniscus, which can exhibit a range of width to depth ratios, forms where the ribbon plunges into

the liquid coating. Although a number of experimental investigations have studied gas entrainment

via breakdown of the entrance meniscus [4–8], due to the complexity of in-die process physics,

characterized by coupled, fiber-driven gas and liquid flows, a gas-liquid interface, material-, speed-,

temperature-, and surface-roughness-dependent dynamic contact lines, and rapid gas dissolution

into the liquid phase [9], relatively few theoretical studies of in-die fluid mechanics have been

undertaken; see, e.g., the brief review in [1] as well as references in [10, 11]. With regard to the
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Figure 1: Schematic of entrance meniscus region of a fiber ribbon coating operation.

dynamics of the entrance meniscus, very little theoretical work has likewise been reported [12].

This short note considers the response of the entrance meniscus to impulsive lateral motion

of either the coating die or fiber ribbon. It is found that when the characteristic coating pres-

sure increase along the meniscus is much larger than the characteristic gas shear stress along the

meniscus, the meniscus is governed by a nonlinear wave equation. In this case, impulsive lateral

die motions which reduce the distance between the die and fiber ribbon produce shock wave-like

disturbances on the entrance meniscus; impulsive die motions that increase this distance, by con-

trast, lead to expansion fan-like free surface disturbances. Linear wave behavior occurs under a
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wide range of conditions; here, any time-varying change in the distance between the die entrance

and fiber ribbon propagates at fixed speed, without distortion, down the meniscus. We suggest

that propagation of nonlinear and linear free-surface shocks into the moving fiber represents an

important bubble-forming mechanism.

Entrance meniscus model description

A detailed derivation of the entrance meniscus model can be found in [3]; here, we present model

assumptions and the main results. Again, a schematic of the ribbon-coating process is shown in

Fig. 1. Typical length scales are as follows [3]: the fiber ribbon thickness is on the order of 250

µm, the meniscus length, L̃, is on the order of 1 mm (for fiber travel speeds on the order of 10-30

m/s), and the nominal clearance, D̃, between the ribbon face and die entrance, corresponding to

the maximum thickness of the gas-filled gap between the ribbon and meniscus, is 17.5 µm. A ribbon

consisting of 12 fibers is approximately 3 mm wide. [Note, in the following, dimensional quantities

are denoted with tildas; all other terms are nondimensional.]

Key model assumptions are as follows. First, based on both the limited axial extent of the

meniscus, again on the order of 1 mm, and based on computed pressure distributions within a

typical coating die applicator [1] (indicating an approximate linear increase in pressure along the

entry meniscus), we assume that the liquid-side pressure increases linearly with the coordinate x̃.

This assumption, introduced in order to circumvent calculation of the coating flow field, is designed

to capture the large pressure gradients extant within pressurized coating applicators. Thus, the

near-meniscus liquid-side pressure gradient is treated as a parameter. Second, we assume that the
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coating liquid behaves as a Newtonian fluid [10]. Third, dissolution of process gas into the coating

liquid [9] is not accounted for. Finally, based on experimental observations [3], it is assumed

throughout that the aspect ratio, ǫ = D̃/L̃, of the gas-filled gap between the moving fiber and

meniscus is small, ǫ << 1.

The equation governing the meniscus free surface is obtained as follows. First, due to the

narrowness of the gas-filled gap, the leading order gas velocity field is shown in [3] to be governed

by equations corresponding to the lubrication approximation. Second, due to negligible transverse

gas velocities, normal viscous stresses on each side of the free surface are likewise negligible so

that the normal stress balance simplifies to the Young-Laplace equation. Third, imposition of the

kinematic condition at the free surface, integration of the gas-phase continuity equation across the

gap, and allowance for purely lateral motion of the fiber ribbon [i.e., Ỹo = Ỹo(t̃)], then leads to the

following leading order nondimensional equation governing the free surface shape, h = h(x, t) :

ho,t + H1ho,xxxx + H2ho,xxx + H3ho,x − Ẏo = 0 (1)

where
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Here, the dimensionless gas velocity and meniscus shape, represented collectively as χ, have been

expanded as χ = χo+ǫ1χ1+ǫ2χ2+. . . , where ǫ1 = ǫRe = ǫ(ŨfD̃/ν̃g), Re = O(1) is the characteristic

Reynolds number for the gas flow within the gap, Ũf is the characteristic fiber speed, and ν̃g is the

gas kinematic viscosity. Thus, ho is the leading order term in the expansion for h. Again, as shown

in Fig. 1, Yo is the instantaneous horizontal displacement of the fiber from its neutral position.

The parameters A1 and A2 are defined as A1 = ǫ(G̃L̃)(µ̃gŨf/D̃)−1 and A2 = ǫ3(γ̃/D̃)(µ̃gŨf/D̃)−1,

where µ̃g is the gas viscosity, G̃ is the coating axial pressure gradient, and γ̃ is the coating surface

tension coefficient. Physically, A1 represents the ratio of the characteristic change in coating pres-

sure over the length of the meniscus, P̃l = G̃L̃, to the characteristic shear stress, τ̃g = µ̃gŨf/D̃,

exerted by the gas on the reservoir, scaled by the aspect ratio, ǫ. Likewise, A2 represents the ratio

of the characteristic capillary pressure due to coating surface curvature, σ̃ST = γ̃/D̃, to the char-

acteristic gas shear stress, τ̃g, scaled by ǫ3. Finally, note that nondimenionalization is carried out

using the following respective velocity, pressure, time, axial-length, and lateral-length scales: Ũf ,

ρ̃aŨ
2

f , L̃/Ũf , L̃, and D̃.

Results and discussion

In the following, we consider free surface response to impulsive movement of the coating die or fiber

ribbon, focusing on several limiting cases. In the cases considered, the undisturbed, steady state

entrance meniscus is found [3] to have a constant width, ho(x) = 1, equal to the distance, D = 1,

between the die entry and the ribbon; as discussed in [3], the steady solution breaks down in the

vicinity of the dynamic contact line.
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Linear free surface waves

We consider first the linear response of the meniscus under conditions where A1 << 1 and A2 << 1.

Due to the ǫ scaling of the ratio of the characteristic axial coating pressure change, ∆P̃l, to gas shear

stress, τ̃g, in A1, and due to the ǫ3 scaling of the ratio of capillary pressure, σ̃ST , to τ̃g in A2, the

present limits apply to a broad range of conditions: 0 < ∆P̃l/τ̃g << ǫ−1 and 0 < σ̃ST/τ̃g << ǫ−3.

Referring to (1) and using the substitution u(x, t) = ho(x, t) − Yo, where u(x, t) represents the

instantaneous local gap thickness between the meniscus and fiber, we arrive at a simple linear first

order wave equation in u :

u,t +
1

2
u,x = 0 (2)

In this limit, information concerning changes in either the die entrance width, D̃, or fiber ribbon

position, Ỹo, thus travels at half the speed of the fiber (where the nondimensional fiber speed is 1).

Considering, for example, the case where the entrance gap, D̃, instantaneously increases or

decreases, we arrive at a signaling problem [13] and can use a characteristic diagram to determine

the meniscus response. Refer to Fig. 2. Here, possible reflections at the dynamic contact line are

neglected as well as capillary and viscous smoothing of the surface discontinuities created. Due

to the linearity of the problem, and in contrast to the nonlinear case discussed below, any given

discontinuity propagates at speed 1/2. Thus, any time-dependent change in the die entrance width,

D̃, propagates down the meniscus without distortion or dispersion. From a practical standpoint,

this result is important since it suggests that wave propagation into the moving fiber represents a

potential coating bubble formation mechanism.

A similar approach can be used to examine meniscus response to lateral shifts in fiber position,
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Figure 2: Meniscus response to time varying die motion - linear regime.

Yo. In this case, it is readily shown that an outward movement of the fiber ribbon (away from the

die entrance) leads to a linear-in-time increase in the length, L, of the gas pocket. While the model

predicts that an inward displacement also produces a similar increase in L, consideration of the

free surface normal stress balance in the vicinity of the dynamic contact line, P̃g − P̃l ≈ γ̃/r̃, where

r̃ is the characteristic surface curvature, shows that the only physically realizable possibility is the

first. In particular, since P̃g ≈ ρ̃gŨ
2

f is essentially fixed while P̃l increases with depth x̃, then since

outward ribbon movements lead to increased r̃, the dynamic contact line must move downward to

a location where the difference in gas dynamic pressure and coating pressure satisfies the stress

balance.

Nonlinear waves - shocks and expansion fans

We shift now to the nonlinear response of the meniscus under conditions where A1 = O(1) and

A2 << 1. Here, the characteristic gas shear stress within the gap, τ̃g, is much smaller than the
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characteristic axial change in coating pressure, ∆P̃l [τ̃g/∆P̃l = O(ǫ)]. By contrast, and as in the

linear case, the constraint A2 << 1 is not particularly limiting. Under these conditions, (1)

simplifies to the following nonlinear wave equation in u(x, t) = ho(x, t) − Yo :

u,t +
1

2
(1 −

1

2
A1u

2)u,x = 0 (3)

Due to nonlinearity, a rich set of surface responses are now possible; we illustrate with two

examples. For simplicity, we limit attention to A1D
2/2 < 1, where D = h̃o(x̃ = 0, t̃)/D̃ and u ≤ D

for all x and t. In this case, and for increasing time t, characteristics are directed in the positive

x− direction. [When A1u
2/2 > 1, characteristics are directed in the negative x− direction (with

increasing t), and run parallel to the t− axis when A1u
2/2 = 1. Left-running characteristics undergo

reflection at the die entrance; a detailed method of characteristics construction can be undertaken

in this case.] In the first example, the fiber ribbon remains fixed laterally, while the die entrance

width, D̃, instantaneously decreases from D1 = 1 to D2. Since wave speed, c = (1/2)[1 − A1u
2/2],

increases with decreasing gap width, u (and vice-versa), then as shown in Fig. 3, a free surface

discontinuity forms immediately. In the following discussion, we will refer to these discontinuities

as shocks. Using a standard shock fitting procedure [13], we find that the shock speed, cs, is given

by

cs =
1

2
−

A1

2
[u2

2
+ u1u2 + u2

1
] (4)

where u1 and u2 are, respectively, the gap thicknesses before and after die displacement; refer to

Fig. 3. Again, we are neglecting capillary and viscous smoothing and possible reflection at the
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Figure 3: Meniscus response to impulsive inward die motion - nonlinear regime.

nominal dynamic contact line. Again, analogous to the linear response case, shock propagation

into the moving fiber may represent an important coating bubble formation mechanism.

Another practically important circumstance concerns meniscus response to small inward shifts in

die position. Thus, letting u2 = u1−ǫo, where ǫo << u1, it is readily shown that wave speeds before

and after the weak shock, given respectively by c1 = 1/2−A1u
2

1
/4, and c2 = c1 +A1u1ǫo/2+O(ǫ2

o)

satisfy c1 > cs > c2, where cs = c1 + A1u1ǫo/4 + O(ǫ2
o), and where u1 = 1 for Yo = 0. Thus, in

this case, the shock speed differs only slightly from the wave speed associated with the undisturbed

meniscus, c1. [Note, wave speeds ahead of and behind any shock always satisfy the above set of

inequalities.]

As a second example, we consider the nonlinear response when the fiber ribbon again remains

laterally fixed while the die entrance width increases instantaneously from D1 = 1 to D2. As shown

in Fig. 4, in this case, an expansion fan forms in the characteristic x − t plane, and again allows
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Figure 4: Meniscus response to impulsive inward die motion followed by impulsive outward motion
(to original position) - nonlinear regime.

ready construction of the time-varying meniscus shape. [Note, Fig. 4 shows an example where an

initial decrease in entry width is followed by an increase.] Concerning potential bubble formation

during impingement of an expansion fan on the dynamic contact line, it does not appear that

this represents a plausible mechanism. Since expansion fan impingement both reduces free surface

curvature (in the vicinity of the dynamic contact line) and forces the contact line downward to

regions of higher coating liquid pressure, there is no apparent mechanism, for example, to cause the

contact line to rebound against the incoming expansion fan. Clearly, however, detailed examination

of the near-contact-line region is required in order to address questions of this kind.
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