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Three stochastic-based methods are proposed for solving unsteady scalar transport
problems in bounded, single-phase domains. The first (Method I), a local solution
appropriate to problems having Dirichlet conditions, adapts a well-known local
stochastic solution of a backward Fokker–Planck equation to scalar transport. Method
II, a local solution applicable to Dirichlet, Neumann and/or mixed initial boundary value
problems (IBVPs), and representing a time-dependent extension of a recently reported
heuristic steady solution, provides a straightforward addition to the limited collection of
techniques available for Neumann and mixed problems. This approach is shown to be
equivalent to a long-standing, rigorous low-order solution and, in addition, allows
development of a probabilistic-based analytical solution to Neumann problems, stated in
terms of an exit probability. Method III, a global solution, likewise suitable for Neumann
and mixed IBVPs, follows by combined application of domain boundary Taylor
expansions and Method I. This approach is shown to be computationally equivalent to a
global version of Method II.
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1. Introduction

Stochastic methods have been used to study scalar transport for quite some time;
significant, ongoing research can be found, for example, in the areas of ground
water (Chevalier & Banton 1999; McKinley 1999; Nguyen 1999; Trantham &
Durnford 1999; Grzywinski & Sluzalec 2000; Berkowitz & Scher 2002),
atmospheric boundary layer (Gusey 1998; Reynolds 1999; Kurbanmuradov &
Sabelfeld 2000; Kljun 2002; Ditlevsen 2003; Franzese 2003; Hseih et al. 2003) and
marine (Reynolds 2002) transport. More recently, stochastic methods have found
application in turbulent momentum, heat and mass transfer (Dekker et al. 1995;
Papavassiliou & Hanratty 1997; Franzese et al. 1999; Mitrovic & Papavassiliou
2003; Mito & Hanratty 2003), and, for example, in the study of microstructure
evolution during solidification (Charbon & LeSar 1997).
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R. G. Keanini436
The theoretical basis of much of this work is founded on an equivalence that
exists between continuum models describing scalar transport and, on a more
fundamental level, stochastic differential equations that model the evolution of
individual quasi-physical entities perpetuating transport (which we will refer to,
interchangeably, as particles, random processes or random walkers (RWs)). For
example, in the case where continuum-scale transport is determined by combined
advection and Fourier diffusion, individual particle trajectories, c(q) considered
in this paper as moving in backward time q, can be modelled using a stochastic
differential equation of the standard Ito form,

dcðqÞZb dqC â$dw; ð1:1Þ
where b is the drift velocity; â is related to the diffusion tensor; a via ââTZa, dq
is a backward time increment (dqZKdt); and dwZdw(q) is a multidimensional
Weiner process. Other representations for dc are possible depending on the
nature of the stochastic process modelled (e.g. Gardiner 1983).

Given (1.1), and assuming that the continuum scalar field hZh(x, q) is twice
differentiable in x and once differentiable in q, we can apply Ito’s formula to
h(c(q),q) take expectations over all particle trajectories launched, and obtain a
generic local solution of the form

hðx; ~qÞZEx;~q

ðt
~q
½localCadvectiveCdiffusive transport terms�dq

CEx;~q½local martingales�CEx;~q½boundary values sampled�

CEx;~q½initial values sampled�; ð1:2Þ

where Ex;~q refers to the expectation taken with respect to the solution point ðx; ~qÞ,
and where, as detailed in §3, the continuum local, advection and diffusion terms,
having the form h;qCb$VhCð1=2ÞVT$a$Vh, sum to zero. Since the first two
terms on the right-hand side of (1.2) are zero, the local stochastic solution for h is
determined by the average of all boundary values sampled, plus the average of all
initial values sampled, taken over the set of particles launched from ðx; ~qÞ.

Importantly, the equivalence between the continuum model describing scalar
transport and the stochastic differential equation governing the motion of
individual particles, e.g. (1.1), provides a Monte Carlo-based recipe for
constructing stochastically based solutions for hðx; ~qÞ: launch sufficient number
of RWs from ðx; ~qÞ, while appropriately accommodating the boundary and the
initial conditions extant on the problem.

This paper focuses on passive scalar transport within single-phase regions.
Three methods are proposed for solving unsteady problems on bounded domains,
where the first applies to Dirichlet problems and the latter two are appropriate to
Neumann ormixedDirichlet–Neumann problems. The formulation of eachmethod
emphasizes heuristic and algorithmic reasoning, both as a means of illustrating the
physical basis of each approach, and as a means of establishing clear, intuitive
foundations for future development of numerical solution techniques.

The first method, Method I, represents a straightforward adaptation of a well-
known local solution (Friedman 1975) to a backward Fokker–Planck equation,
subject to Dirichlet boundary conditions; surprisingly, it does not appear that
this solution has found wide application in scalar transport. Indeed, Method I
Proc. R. Soc. A (2007)



437Random walk methods for scalar transport
proves important in several respects. First, the method accommodates ill-posed
transport problems in which boundary conditions are unknown over a portion of
the domain boundary (§3c). Second, the method provides the basis for
development of Method III, a stochastic whole-field solution to mixed initial
boundary value problems (IBVPs). Third, the method can be adapted to tackle
nonlinear transport (§§3d and 5c).

Several significant results follow from the development and application of
Method II, a local solution appropriate to unsteady Neumann, Dirichlet andmixed
IBVPs. First, themethod,which extends the steadyheuristic approach ofGrigoriu&
Samorodnitsky (2003) to unsteady problems, is shown to be equivalent to
Milshtein’s rigorous low-order solution (Milshtein 1997). Second, with respect to
unsteady Neumann problems, Method II provides the basis for a probabilistic-based
analytical solution (§4b). The probabilistic solution, applied to diffusion-dominated
problems in two limits, recovers, in both cases, corresponding continuum analytical
solutions (§§4b(i),(ii)).Third, the latter comparisonsprovide consistent estimates for
the particle reflection distance, 3l0 (Grigoriu & Samorodnitsky 2003), used
at Neumann boundaries, showing that 3l0 should be of the order of the incremental
diffusion length, dDqZ

ffiffiffiffiffiffiffiffiffiffiffi
2aDq

p
, where 2a is the diffusivity and Dq is the backward

time-step. This result is in turn consistent with and completes Milshtein’s
prescription for the thickness of his near-boundary region (which, as discussed in
§4a, accommodates particle reflections). Fourth, Method II allows a straightfor-
ward demonstration that Method I can accommodate combined Dirichlet and
homogeneous Neumann conditions (§5a), a feature that is crucial to the
development of Method III.

Finally, Method III, which again applies to Neumann and mixed IBVPs, uses
surface Taylor expansions to generate a system of equations involving unknown
surface fluxes and unknown surface scalar magnitudes (extant on Dirichlet and
Neumann boundaries, respectively), along with an associated set of subsurface
scalar magnitudes. Application of a modified form of Method I, which again
accommodates combined Dirichlet and homogeneous Neumann conditions, and
which is used at each subsurface Taylor expansion location, then allows
determination of subsurface scalar magnitudes, closing the problem. It is shown
that by choosing the Taylor expansion distance, Dn; to be of the order of

ffiffiffiffiffiffiffiffiffiffiffi
2aDq

p
,

Method III and a global version of Method II are computationally equivalent.
Given that stochastic methods offer a potentially powerful, mesh-free

approach for studying scalar transport, particularly within small, spatially
limited regions, it is clear that valid solutions in these cases require formulation
of reliable boundary conditions. Thus, §6 of the paper considers an extended
example of setting appropriate boundary conditions on a spatially focused
stochastic solution. The example highlights the importance of properly
determining a problem’s structure prior to constructing a stochastic solution.
2. Preliminaries

(a ) Solution domains and boundary conditions

The methods to be developed apply to initial value transport problems on
bounded domains. In all the cases, solutions are sought over a backward time-
interval, q2½~q;TÞ, where backward time, q, is related to forward time, t, via
Proc. R. Soc. A (2007)
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Figure 1. Solution domain.
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qZTKt, ~q2½0;TÞ, and where T is a specified stopping time. We use backward
time since it allows straightforward accommodation of non-homogeneous initial
conditions, viz. these are effectively treated as Dirichlet conditions. Thus, known
initial values are imposed on the final space-time slice, dQfZD!fqZTg, where
D is the spatial domain. Without loss of generality, all the three methods focus
on two-dimensional transport within a rectangular domain D. The space-time
solution domain, within which RWs are used to construct solutions, in all cases
thus corresponds to a cylinder, denoted as Q, where QZD!½~q;TÞ (figure 1).

In Method I, Dirichlet conditions, or Dirichlet conditions combined with
homogeneous Neumann conditions, must be applied on all the boundaries. The
use of homogeneous Neumann conditions in the stochastic construction
underlying Method I, while apparently not discussed in the literature, is detailed
in §5a. Methods II and III allow for any combination of space and time-varying
Dirichlet and Neumann conditions.
(b ) Random walks in fluid and solid phases

The space-backward time trajectory, cðqÞ, taken by any given RW is governed
by an Ito stochastic differential equation of the form given by equation (1.1). In
fluid-phase transport problems, the drift b assumes two distinct forms, depending
on whether the flow is laminar or turbulent. In laminar flows, b corresponds to
the reversed Eulerian velocity field, bZKu; by contrast, in turbulent transport
problems, b is typically determined using Thomson’s (Thomson 1987) well-mixed
condition (e.g. Hseih et al. 2003), where again a sign change is required when
backward solutions are sought. Considering the diffusion matrix, a, in laminar
flows with isotropic diffusion, this term is simply related to the scalar diffusivity,
2a, via aijZ2adij; while in turbulent flow, it is typically determined by the mean
turbulent kinetic energy dissipation rate (Hseih et al. 2003).
Proc. R. Soc. A (2007)



439Random walk methods for scalar transport
For solid-phase transport, in cases where the solid undergoes time-dependent
elastic or plastic deformation, the drift b again corresponds to the reversed
Eulerian velocity field. Likewise, the form of the diffusion matrix, a, depends on
the degree of anisotropy underlying diffusive transport; Carslaw & Jaeger (1959),
for example, provide representative examples of anisotropic solid-phase diffusion.

Here, for simplicity, it is assumed that coupling between the scalar and the
velocity fields is weak enough that the velocity field, u, can be computed
independent of the scalar transport problem.
3. Transport problem subject to Dirichlet conditions: Method I

This section first reviews the standard local, backward-in-time stochastic
solution for Dirichlet problems. Details of the stochastic construction and two
simple examples are then used to illustrate the meaning of the solution. Finally,
limitations associated with the solution are identified and remedies proposed.

The problem governing transport of scalar h is stated as follows:

LhC
vh

vq
Z f ðx; qÞ on QZD!½~q;TÞ; ð3:1Þ

hðx;TÞZfðxÞ on dQf ZD!fqZTg; ð3:2Þ

hðx; qÞZ gðx; qÞ on dQZ dD!½~q;TÞ; ð3:3Þ
where

LZ
1

2
aij

v2

vxivxj
Cbi

v

vxi
ð3:4Þ

and where f(x) is the final condition on h and g(x, q) is the time-varying
Dirichlet condition. In fluid- or solid-phase scalar transport problems, f (x, q)
could represent a mass source or sink, for example, owing to chemical reaction, or
a thermal source, for example, owing to viscous dissipation in fluids.
(a ) Local stochastic solution

The stochastic solution of (3.1)–(3.3), obtained at any time ~q, ~q2½0;TÞ, can
be written in the form (Friedman 1975)

hðx; ~qÞZEx;~q½gðcðtÞ; tÞ�CEx;~q½fðcðtÞÞ�KEx;~q

ðt
~q
f ðcðsÞ; sÞds

� �
; ð3:5Þ

where estimates of expectations are given by

Ex;~q½gðcðtÞ; tÞ�Z
1

N

XNg

iZ1

gðcðtiÞ; tiÞ; ð3:6Þ

Ex;~q½fðcðtÞÞ�Z
1

N

XNf

iZ1

fðcð ~TÞÞ; ð3:7Þ
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Figure 2. Illustration of solution construction.
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and

Ex;~q

ðt
~q
f ðcðsÞ; sÞds

� �
Z

1

N

XN
iZ1

ðti
~q
f ðcðsÞ; sÞds

� �
: ð3:8Þ

In (3.6), N is the total number of RWs launched from ðx; ~qÞ, ti2½~q;TÞ is the
(random) exit time for the i th RW to exit through dQ, c(ti)2dQ is the
corresponding exit point and Ng is the total number of trajectories exiting
through dQ. Similarly, in (3.7), ~TZTK~q is the travel time for each RW
reaching dQf, cð ~TÞ2dQf is the exit point and Nf is the number of RWs exiting
through dQf. Likewise, ti in (3.8) is the first exit time for trajectories passing
out of either dQ or dQf (where tiZ ~T in the latter case). A schematic of the
solution construction is shown in figure 2.
(b ) Heuristic examples

As a means of gaining physical insight into the solution in (3.5)–(3.8), simple
heuristic checks can be carried out. Thus, consider, for example, purely diffusive
transport (bZ0) within a slender domain D, in which the source term fZ0 and in
which the aspect ratio L0=H0OO1 where L0 and H0 are the domain dimensions in
the x1 and x2 directions, respectively. For times q satisfying TKqTH 2

0 =ð2aÞ,
and solution points lying in the range H0(x1(L0KH0, most RWs will impinge
on either lateral boundary, x2Z0 and x2ZH0 (rather than exiting through the
final time slice, D!{qZT} or through end boundaries, x1Z0 and L0). Thus,
Ng[Nf, so thatNgzN. Considering the case where g(x1, x2Z0, q)Zg(x2Z0)Zc1
and g(x1, x2ZH0, q)Zg(x2ZH0)Zc2 with c1 and c2 constant, transients die out
for TKqH 2

0 =ð2aÞ, and the leading-order transport equation assumes the form
h;x 2x 2

Z0. The corresponding leading-order solution, having O((H0/L0)
2) error,

is hZ(c2Kc1)x2/H0Cc1.
We verify that this solution is recovered via the stochastic formula in (3.5) by first

noting that under the present set of conditions, the solution in (3.5) can be expressed
in terms of exit probabilities, hðx2ÞZgðx 2Z0Þj1ðx2ÞCgðx2ZHoÞj2ðx2Þ, where
Proc. R. Soc. A (2007)



dDp

dDe
(x,q ).

q = T

x2

x1

g(x,q ) = 0 g(x,q ) = 1 

t

q

dQe = dDeX [q,T ) 

q = q
D

dQf = DX{q =T}

+

+

~

~

~
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441Random walk methods for scalar transport
j1(x2) andj2(x2) are theprobabilities of exit through x2Z0 and x2ZH0, respectively,
and where j1(x2)Cj2(x2)Z1. Here, the problem governing, for example, j1 is given
by j1;x 2x 2

Z0, with j1(x2Z0)Z1 and j1(x2ZH0)Z0 having the solution
j1(x2)Z1Kx2/H0. Thus, we find that the stochastic solution given by (3.5) is
exactly equal to the continuum analytical solution.

A similar check of the limit where axial drift, given, for example, by
bZb1ðx2Þê1, dominates diffusion, with associated boundary layer growth,
dZOðð2aL0=b1;avgÞ1=2Þ, much smaller than H0, shows that outside the boundary
layers adjacent to x2Z0 and x2ZH0, and for q( tKL0/b1,avg, RWs released from
any point (x1, x2) track to the inlet at x1Z0. In this case, again NgzN, and the
time for particle exit through the inlet is given by tzt(x1, x2)Zx1/b1(x2); thus,
hðx1; x2; qÞzgðx1Z0; x2; qCx1=b1ðx2ÞÞ. This, of course, corresponds to the
continuum analytical solution obtained via the method of characteristics.
(c ) Limitations

(i) Unknown boundary conditions

This section and §3d briefly address two limitations associated with the
Method I solution, namely the fact that many transport problems are subject to
a priori unknown boundary conditions, and that transport problems are often
nonlinear.

Considering the first limitation, we focus on the practically important example
in which an outlet condition in a boundary layer development problem is
unknown. The problem is shown schematically in figure 3, where the inlet and
outlet correspond to the left and right boundaries, respectively. Under these
circumstances, a certain fraction of the N RWs launched from a solution
point ðx; ~qÞ will typically exit through the uncharacterized downstream
boundary, dQeZdDe!½~q;TÞ.
Proc. R. Soc. A (2007)
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This source of error can be circumvented by at least three approaches. The
first, and often simplest, as illustrated in the extended example of §6, centres on
establishing a realistic downstream exit condition, based on consideration of
conditions external to the boundary layer. Alternatively, it is often possible to
infer a homogeneous Neumann condition; in this instance, as detailed in §5a, the
solution in (3.5) remains valid.

A second approach, which is the most rigorous, requires calculation of the exit
probability, j(x, q) for RWs leaving the cylinder Q through dQe. For example,
considering the broad class of problems not subject to volumetric generation or
consumption, we set f (x, q)Z0 in (3.1), and define the final and boundary
conditions corresponding to (3.2) and (3.3) as follows:

jðx; qZTÞZ 0 on dQf ZD!fqZTg; ð3:9Þ

jðx; qÞZ 1 on dQe Z dDe!½~q;TÞ; ð3:10Þ

and

jðx; qÞZ 0 on dQp Z dDp!½~q;TÞ; ð3:11Þ
where, as shown in figure 3, dDp is the union of the inlet, upper and lower boundaries
of the solution domain D. By considering the stochastic solution given in
(3.5)–(3.7), it is readily observed that this problem indeed provides the probability
of exit through dQe; specifically, setting fZ0 and g(x, q)Z0 on all boundaries save
the outlet, where gZ1 the sum in (3.7) is identically equal to the number of
trajectory exits through dQe, divided by the total number of RWs launched. Thus,
solving the relatively simple exit probability problem governed by (3.1) and
(3.9)–(3.11), via, for example, analytical or numerical means, provides a detailed
map of the conditional probability, PðcðtÞ2dQejcðqZ ~qÞZx; ~qÞ, for trajectory
exits through the outlet, as a function of the space-time solution point ðx; ~qÞ2Q. In
practice, one would probably define an ad hoc upper limit on P, above which
stochastic solutions at any associated coordinate ðx; ~qÞ would not be accepted.

A third, heuristic, approach simply limits stochastic solutions to the region
0%x1TL0KxdiffðTK~qÞ, where xdiffðTK~qÞZð2aðTK~qÞÞ1=2 is the characteristic
diffusion length and L0 is again the streamwise length of the solution domain D.
Since the variance in the swarm of RWs launched from a solution point increases
as 2aq, the characteristic radius of the swarm at time q is 2aq1/2. Thus, limiting
solutions to the above streamwise range limits the number of trajectories exiting
through dQe.
(d ) Nonlinear transport

A standard approach for treating nonlinear, time-parabolic transport
problems is based on quasilinearization. The idea centres on approximating
the current magnitude of any given transport parameter, in our case the
diffusivity matrix, a(x, t)Za[h(x, t)], using the solution for h(x, t) obtained at the
previous time-step,

aðx; tnC1ÞZa½hðx; tnÞ�: ð3:12Þ
In order to use quasilinearization, the transport problem must be parabolic in
time, i.e. the problem must evolve from some initial state, h(x, tZ0)Zf(x), x2D.
Proc. R. Soc. A (2007)
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Here, for a backward-in-time stochastic solution, the following sequential
algorithm can be used. Starting from the initial forward time, tZ0, discretize the
forward time axis as tkZk!Dt, kZ0,., M, where DtZT/M, T is the desired
total solution time and M is the number of time-steps. Given this discretization,
and beginning with the initial forward time-interval (0, Dt], apply the backward
stochastic solution approach, Method I, in succession over the first (kZ1), and
then over each succeeding forward interval, [tkK1, tk). Thus, for example, the
final condition to be sampled during the k th solution interval corresponds to
h(x, tkK1), as computed in the preceding time-step (where h(x, 0)Zf(x) for
kZ1). Likewise, only those boundary conditions extant on the space-time
boundary increment DQ(k)ZdD!(tkK1, tk] are sampled over (tkK1, tk]. In
addition, during each time-interval, (tkK1, tk], quasilinearization is used to
evaluate all scalar-dependent properties. Alternative approaches designed to
improve solution stability (at higher cost), for example, in which sampling occurs
over, for example, dD!(0, tk], are also possible.
4. Transport problems having mixed Dirichlet and
Neumann conditions: Method II

This section and the next describe stochastic-based approaches for solving time-
dependent transport problems subject to both Dirichlet and Neumann boundary
conditions. Importantly, it appears that very few stochastic techniques have been
developed for solving steady and time-dependent mixed boundary value
problems (Milshtein 1997; Grigoriu and Samorodnitsky 2003).

The problem is depicted in figure 4 where, for illustrative purposes,
Dirichlet conditions are imposed over dD1, and Neumann conditions are
imposed on dD2. In general, dD1 and dD2 can each consist of finite sets of
Proc. R. Soc. A (2007)
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disconnected line segments (or in three-dimensional problems, disconnected
surface areas). Finally, we only consider the case where diffusivity is isotropic,
i.e. aijZ2adij.

Method II extends Grigoriu & Samorodnitsky (2003) recently reported
heuristic approach for solving steady mixed Dirichlet–Neumann problems. The
idea is as follows: whenever an RW reaches a Neumann boundary, the RW is
stopped, displaced normally into the solution domain D by a small fixed distance,
3l0, and then restarted. The Markov chain thus constructed is terminated when it
finally reaches a Dirichlet boundary.

Here, we define a backward-in-time n-dimensional random walk, c(q) (where
in the present two-dimensional case, nZ2) governed by the backward-in-time
version of Ito’s equation, (1.1). We again choose a backward-in-time approach
since the method requires a known value for h at some termination time. Here, h
is known on the final time slice, dQfZD!{qZT}, as well as on the Dirichlet
portion, dQ1ZdD1!½~q;TÞ, of the boundary dQZdD!½~q;TÞ. The termination
times in each case are thus ~TZTK~q and ~tZtK~q, respectively, where ~t is a
random variable corresponding to the time of first impingement on dQ1 and
~q2½0;TÞ is again the chosen solution time.

We thus launch a stochastic process, c(q), from solution point ðx; ~qÞ, lying
within the cylinder Q, and imagine the process impinging on the Neumann
boundary, dQ2, at a series of space-time points ðY1; q1Þ; ðY2; q2Þ;.; ðYq; qqÞ,
where, as a generalization of Grigoriu & Samorodnitsky (2003), we stop
the process at each point of impingement and displace the process into Q
according to

X0
jðqjÞZYjðqjÞK3l0nðYjðqjÞÞ: ð4:1Þ

Here, the displacement is in the direction opposite the local outward normal,
n(Yj); l0 is a small constant distance; and 3/1. The above relationship applies
to the j th impingement, where 1%j%q, and where the RW is terminated when
it either impinges on dQ1 or dQf; thus, q is the number of impingements on
the Neumann boundary dQ2 that occur during the RW’s journey to either dQ2

or dQf.
Given (4.1), we next write the following pairs of equalities, valid at each of q

succeeding impingement points:

hðY1; q1ÞZhðx; ~qÞC
Ð q1
~q
f ðcðqÞ; qÞdqCM1;

hðX0
1; q1ÞzhðY1; q1ÞK3l0ð2aÞK1 _SðY1; q1Þ;

hðY2; q2ÞZhðX0
1; q1ÞC

Ð q2
q1
f ðcðqÞ; qÞdqCM2;

hðX0
2; q2ÞzhðY2; q2ÞK3l0ð2aÞK1 _SðY2; q2Þ;

«

hðYq; qqÞZhðX0
qK1; qqK1ÞC

Ð qq
qqK1

f ðcðqÞ; qÞdqCMq;

hðX0
q; qqÞzhðYq; qqÞK3l0ð2aÞK1 _SðYq; qqÞ;

hðYqC1; qqC1ÞZhðX0
q; qqÞC

Ð qqC1

qq
f ðcðqÞ; qÞdqCMqC1:

ð4:2Þ
Proc. R. Soc. A (2007)
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Following the q th impingement, the RW either reaches dQ1 or dQf, yielding,
respectively,

hðYqC1; qqC1ÞZ gðYqC1; qqC1Þ; ð4:3Þ
or

hðYqC1; qqC1ÞZfðYqC1Þ: ð4:4Þ
Here, the first equality in each pair of (4.2) reflects application of Ito’s formula to
h(x, q), followed by use of equation (3.1). The last term, Mp, in these equations,

given by MpZ
Ð qp
qpK1

âijh;xidwj is a martingale; in taking the expectation over

the swarm of RWs launched from ðx; ~qÞ, the sum of these terms, Ex;~q½
PqC1

pZ1Mp�,
is zero. The second, approximate equality in each pair of (4.2) represents a finite
difference approximation to the surface flux, _S, at each impingement point.

Summing all the terms on the right- and left-hand sides of (4.2) and using the
appropriate end value for h, given by (4.3) or (4.4), we obtain an important
relationship between h at the solution point, ðx; ~qÞ, the set of fluxes sampled at the
q impingement points on dQ2, and the final known value of h,

hðx; ~qÞzbðYqC1; qqC1ÞC3l0ð2aÞK1
Xq
pZ1

_SðYp; qpÞK
XqC1

pZ1

ðqp
qpK1

f ðcðqÞ; qÞdqK
XqC1

pZ1

Mp;

ð4:5Þ
where b(YqC1, qqC1)Zg(YqC1, qqC1) for final impingement on dQ1 and b(YqC1,

qqC1)Zf(YqC1) with qqC1ZTK~q, for final impingement on dQf.
The final local solution for hðx; ~qÞ is obtained by taking the expectation over a

swarm of RWs launched from ðx; ~qÞ, yielding an expression that is a
generalization of the Method I solution given by (3.5)–(3.8),

hðx; ~qÞZ 1

N

XNg

iZ1

gðcðtiÞ; tiÞC
1

N

XNf

iZ1

fðcðtiÞÞK
1

N

!
XN
iZ1

XN ðiÞC1

pZ1

ðqðiÞp
q
ðiÞ
pK1

f ðcðqÞ; qÞdq C
1

N

3l0
2a

XN
iZ1

XN ðiÞ

pZ1

_S YðiÞ
p ; qðiÞp

� �
; ð4:6Þ

where N is the number of RWs launched, N(i ) is the number of boundary hits

on dQ2 experienced by the i th RW and ðYðiÞ
p ; q

ðiÞ
p Þ is the p th impingement

point and time for the i th RW. In addition, (c(ti),ti)2dQ1 in the first term
on the right-hand side of equation (4.6) is the first impingement point on dQ1

for the i th RW to reach dQ1; Ng thus equals the number of RWs reaching
dQ1. Likewise, c(ti)2dQf in the second term is the impingement point on the
final time slice, dQf, of the i th RW to reach dQf; Nf is thus the total number
of RWs to reach dQf. (Hence, NgCNfZN ). Finally, in the third term, q

ðiÞ
pK1 and

q
ðiÞ
p are the start and stop times corresponding to the (pK1)th and p th hits of the
i th RW on dQ2.
(a ) Validation of Method II

In order to validate the solution in (4.6), we compare it to a rigorous low-order
solution reported by Milshtein (1997). However, we first note the consistency of
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Method II. Specifically, in the case where the entire boundary is subject to
Dirichlet conditions, the last term on the right-hand side of (4.6) is zero, and we
recover the solution obtained via Method I, (3.5)–(3.8).

Since Method II reduces to Method I when Dirichlet conditions are imposed, we
focus on the case where only Neumann conditions are extant, with the source term,
f (x, q), zero, and the initial condition, f(x), homogeneous. Thus, (4.6) simplifies to

hðx 2; ~qÞZ
1

N

3l0
2a

XN
iZ1

XN ðiÞ

pZ1

_S YðiÞ
p ; qðiÞp

� �
: ð4:7Þ

The time-dependent transport problem involving both Dirichlet and Neumann
conditions can in principle be solved using nC2-coupled stochastic differential
equations, where again n is the spatial dimension of the transport problem. Under
the conditions defined above, this system assumes the form (Milshtein 1997)

dcZbdqC â$dwCnIdDðcÞdmðqÞ;

dY Z 0;

dZ Z
_S

2a
IdDðcÞdmðqÞ;

ð4:8Þ

where IA(c) is the indicator function for the set A IA(c)Z1 when c2A, IA(c)Z0
otherwise) and m(q) is the local time process associated with the stochastic process
c(q). In the general case (Milshtein 1997), the stochastic process Y accommodates
scalar-dependent source terms within Q and/or on dQ. Likewise, process Z
accommodates scalar-independent source terms in Q and/or on dQ. In all cases,
the initial values of Y and Z, evaluated at the solution point ðx; ~qÞ, are specified as
1 and 0, respectively. See Gihman & Skorohod (1972) and Milshtein (1997) for
further details and for the general form of the coupled stochastic differential
equation (SDE) system as well as the associated general probabilistic solution.

Milshtein (1997) derived both high- and low-order approximate solutions to
the general stochastic system, appropriate for numerical treatments. Thus,
following Milshtein (1997), we define a near-boundary region, �Dr , consisting of
all x lying within a distance, C1r, of the domain boundary dQ, where C1r is
measured in the local normal direction of dQ. Here, r is small and C1 is a positive
O(1) quantity. Given �Dr , define �QrZ �Dr !½~q;TÞ as the annular layer adjacent
to (and including) the space-time boundary dQZdD!½~q;TÞ.

Milshtein proved that once the process c enters the near-boundary region, �Qr ,
to an order of accuracy, O(r), the following formulae can be used to estimate the
non-zero stochastic differentials in (4.8):

Dc$nZ qr ;

DZ Z
_S

2a
qr ;

ð4:9Þ

where again the differential dYZ0, and q is an unspecified O(1) positive
quantity. Note that n is here defined as an inward unit normal; thus, as
dictated by Milshtein (1997), and consistent with Grigoriu’s prescription
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(Grigoriu & Samorodnitsky 2003), the displacement, Dc$nZqr, of the random
process, c, is away from the boundary, dD, into D. Also note that the time-step
is given by DqZr2, where a larger time-step is permitted outside of �Qr .

Referring to the expression for dZ in (4.8), and to the near-boundary
approximation, DZ, in (4.9), it is clear that for any given RW, say the i th RW
launched from a solution point ðx; ~qÞ, that integration yields

Zx;~qðcðqÞ; qÞKZx;~qðx; ~qÞZ
qr

2a

XN ðiÞ

pZ1

_S YðiÞ
p ; qðiÞp

� �
; ð4:10Þ

where the terms Y
ðiÞ
p and q

ðiÞ
p again represent the p th impingement location and

time, respectively, and where the second term on the left-hand side again, is
specified as 0. Taking the expectation over N RWs launched from ðx; ~qÞ,
and using the general stochastic solution given in Milshtein (1997), we finally
obtain Milshtein’s O(r) solution

hðx; qZ ~qÞZE½Zx;~qðcðqÞ; qÞ�Z
qr

2a

1

N

XN
iZ1

XN ðiÞ

pZ1

_S YðiÞ
p ; qðiÞp

� �
: ð4:11Þ

Comparing Milshtein’s solution, (4.11), with the solution from Method II, (4.7),
it is clear that the latter is equivalent to the former. We note that derivation of
Method II, as given above, uses a fixed time-step, Dq, whereas Milshtein’s
approach allows for differing time-steps inside and outside the near-boundary
region. In the case where a fixed time-step is used in the latter approach, the
following correspondences between parameters can be identified: DqIIZDqMZr2

and 3l0Zqr, where the subscripts ‘II’ and ‘M’ refer to Method II and ‘Milshtein’,
respectively. Finally, as discussed by Milshtein (1997), an O(r2) near-boundary
scheme can be generated by defining a near-boundary region as �Qd, where the
thickness d is chosen to be proportional to r2. In this case, r in all of the
differentials given above is replaced by d.
(b ) Derivation of probabilistic-based analytical solution

In this section, we use Method II to derive a probabilistic-based analytical
solution applicable to time-dependent Neumann problems. We then show
that the probabilistic solution matches corresponding continuum analytical
solutions in two limits (§§4b(i),(ii)). The latter analyses also provide
detailed expressions for the unspecified parameters, 3l0 and qr, introduced in
Grigoriu & Samorodnitsky (2003) and Milshtein (1997) formulations, respect-
ively. With regard to numerical solutions of problems that are beyond
probabilistic analytical solutions, both examples indicate consistent estimates
for these parameters.

Importantly, the approach used to obtain the probabilistic analytical solution
appears to be general enough to be applicable to a range of transport problems
subject to Neumann conditions. The two examples considered in §§4b(i),(ii)
clearly indicate the suitability of this approach to diffusion-dominated
problems. In problems where drift is important (and boundary injection/
suction does not occur), the key assumption underlying the derivation of the
probabilistic solution (i.e. that RWs, upon reaching a Neumann boundary,
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remain close to the boundary through the remainder of the solution) probably
remains valid. Thus, for problems subject to advection, it likewise appears that
the probabilistic-based solution still applies. Future work will consider this
important question.

For simplicity, we assume diffusion-dominated transport and, in this
section, limit solution points, (x1, x2) to the region

ffiffiffiffiffiffiffiffiffiffi
2aT

p
/x1/L0K

ffiffiffiffiffiffiffiffiffiffi
2aT

p

and x2/H0K
ffiffiffiffiffiffiffiffiffiffi
2aT

p
; in this case, most RWs will not reach the lateral

boundaries nor the upper boundary, so the problem can be taken as one
dimensional (in the x2 direction) over a semi-infinite domain. In addition, we
again assume a homogeneous initial condition and that sources, f (x, q), are
absent. Although the boundary flux, _S, is taken to be constant throughout, for
linear problems, the stochastic solution obtained can be used to construct, via
Duhamel’s method (e.g. (Carslaw & Jaeger 1959)), solutions to problems in
which the boundary flux varies with time. This is briefly discussed in §4b(iii).

To begin the derivation, discretize the forward time axis into M equal
increments, with DtZT/M; in addition, for notational simplicity, let the
backward solution time ~qZ0. Next, launch N RWs from the solution point
ðx; ~qZ0Þ. Over the j th forward time-interval, (tjK1, tj] (where tjZjDt,
jZ1,2, ., M), let the total number of RWs that impinge on the boundary,
x2Z0, be denoted as nj. The stochastic solution in (4.7) can then be
stated as

hðx 2; ~qZ 0ÞZ 3lo
2a

_So

n1
N

C
n2
N

C/C
nM
N

h i
; ð4:12Þ

where _S0 is the constant imposed flux.
Next, we recognize that once an individual RW, travelling in backward time,

has reached x2Z0, say over the k th backward time increment DqkZ[qkK1, qk)
(where qkZkDqZkT/M, kZ1,2,., M) then owing to the small displacement 3l0
away from x2Z0, the RW will, with probability approaching 1, impinge on the
boundary again during the next and all subsequent backward time increments,
DqkC1, DqkC2, ., DqM. Thus, defining n̂k as the number of RWs reaching the
boundary x2Z0 for the first time (i.e. without any prior boundary hits) during
the k th forward time-interval, Dtk, the following approximate equalities can be
written as

n1zn̂MC n̂M�1C/C n̂2 C n̂1;

n2zn̂MC n̂MK1 C/C n̂2;

«

nkzn̂MC n̂MK1 C/C n̂k ;

«

nMzn̂M:

ð4:13Þ

Thus, using (4.13) in (4.12) yields

hðx2; ~qZ 0Þz3l0
2a

_S0

N
½Mn̂MCðMK1Þn̂M�1CðMK2Þn̂M�2 C/C n̂1�: ð4:14Þ
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Next, note that (MKk)Z(TKkDq)/Dq, kZ1,2,., M, and recognize that the
following relations can be written as:

n̂M

N
Zj0ðx2;DqÞKj0ðx2; 0ÞZ

vj0

vq
jx 2;qZ0Dq;

n̂M�1

N
Zjoðx2; 2DqÞKj0ðx 2;DqÞZ

vj0

vq
jx 2;qZ0Dq;

n̂M�2

N
Zjoðx2; 3DqÞKj0ðx 2; 2DqÞZ

vj0

vq
jx 2;qZ2DqDq;

«

n̂1

N
Zj0ðx2;MDqÞKj0ðx 2; ðMK1ÞDqÞZ vj0

vq
jx 2;qZðMK1ÞDqDq;

ð4:15Þ

where j0(x2, q) is the probability that RWs launched from (x2, q)Z0 exit
through x2Z0 over [0, q). Thus, using (4.15) in (4.14) gives

hðx2; ~qZ 0Þz3l0
2a

_S0

Dq
q
n̂M

N
CðqKDqÞ n̂MK1

N
CðqK2DqÞ n̂MK2

N
C/CDq

n̂1

N

� �
;

ð4:16Þ

or

hðx2; ~qZ 0Þz3l0
2a

_S0

Dq
½qðj0;qj0 Cj0;qjDqCj0;qj2DqC/Cj0;qjðMK1ÞDqÞDq�

K
3l0
2a

_S0

Dq
½j0;qjDqCj0;qj2Dqð2DqÞCj0;qj3Dqð3DqÞC/

Cj0;qjðMK1ÞDqðMK1ÞDq�Dq; ð4:17Þ
where qZT.

The first bracketed term in (4.17) simplifies to q[j0(x2, q)Kj0(x2, 0)].
Focusing on the second bracketed term in (4.17), we rewrite this as

ðqKDq

Dq

j0;qdqC

ðqKDq

2Dq
j0;qdqC

ðqKDq

3Dq
jo;qdqC/Cj0;qjðMK1ÞDq;

and use this in (4.17) to finally obtain

hðx2; ~qZ 0Þz3l0
2a

_S0

Dq

ðq
0
j0ðx2; q0Þdq0; ð4:18Þ

where a small-order term, qj0,qjqDq, has been neglected relative to the
integral shown.

Importantly, and as noted, (4.18) comprises what appears to be a fairly
general probabilistic-based analytical solution to diffusion-dominated problems
subject to Neumann conditions. The following subsections compare this solution
in two limits against two known analytical solutions.
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(i) Comparison of probabilistic and continuum analytical solutions: XT[1

Both probabilistic- and continuum-based solutions are conveniently expressed
in terms of XTZx2=

ffiffiffiffiffiffiffiffi
8aq

p
Zx2=

ffiffiffiffiffiffiffiffiffiffi
8aT

p
, as shown in this section, in the limit

XT[1, the probabilistic solution in (4.18) is asymptotically equal to the exact
continuum solution.

For one-dimensional, diffusion-dominated transport over a semi-infinite
domain, the exit probability, j0, is governed by

vj0

vq
C2a

v2j0

vx22
Z 0; ð4:19Þ

with j0(x2Z0, q)Z1, j0(x2/N, q)Z0 and j0(x2, qZT )Z0. In order to obtain a
solution, the problem is restated in terms of forward time using the substitution
qZtKT. The result, stated in terms of backward time, is given by

j0ðx2; qÞZ
2ffiffiffi
p

p
ðN
X
expðKu2Þdu; ð4:20Þ

where XZx2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8aðTKqÞ

p
.

Inserting (4.20) into (4.18), and focusing on the limit XT[1, we then obtain

hðx2; ~qZ 0Þz3l0
2a

_S0

Dq

2ffiffiffi
p

p ½TXT ½expðKX2
TÞK

ffiffiffi
p

p
XTerfcðXTÞ�� XT[1; ð4:21Þ

where again, for notational convenience, we set ~qZ0. Note that the order of error
in this solution is 0ðXK2

T Þ.
The continuum analytical solution to the forward-time, one-dimensional

diffusion problem, evaluated at tZT (corresponding to qZ0 and subject to the
conditions 2ah;x 2

ZK_S0 at x2Z0, h/0 as x2/N, and a homogeneous initial
condition, is given by

hðx2; t ZTÞZ
_S0ffiffiffi
a

p
ffiffiffiffi
2

p

r
T1=2 expðKX2

TÞK
ffiffiffi
p

p
XTerfcðXTÞ

� �
: ð4:22Þ

Comparing the asymptotic stochastic solution given by (4.21) with the
analytical solution in (4.22), it is seen that by properly choosing the
displacement, 3l0, the solutions match; thus, we choose

3l0 Z
4aDq

x2
Z

2d2Dq
x2

; ð4:23Þ

where dDqZ
ffiffiffiffiffiffiffiffiffiffiffi
2aDq

p
is the characteristic diffusion distance associated with the

time-step Dq.
Practically speaking, (4.23) is important since it provides an explicit

relationship for estimating 3l0, or equivalently, qr. Specifically, since Method II
is equivalent to Milshtein’s O(r)ZO(3) scheme (Milshtein 1997), for numerical
solutions based on Method II, the choice ~3~l0, for the displacement, where

~3~l0 Z c03l0 Z c0
d2Dq
x2

; ð4:24Þ
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and where c0ZO(1), ensures that the error associated with Neumann
boundary–particle interactions remain O(3). A similar relationship is obtained
in the next example (§4b(ii)).
(ii) Lumped model: H2
0ð2aqÞK1/1

Here, as a second application of the probabilistic solution in (4.18), we assume
that the diffusive time-scale across domainD, tHZH 2

0 =ð2aÞ, is short relative to the
time, q; that is, diffusion across the layer is rapid enough to allow a lumped
continuum analysis. We again limit the problem to one-dimensional transport by
assuming thatH0/L0/1, and likewise assume that over q2½~q;TÞ, a constant flux,
_S0, exists on both boundaries x2Z0 and H0. The last assumption allows
straightforward application of (4.18). Again, for linear problems subject to a
time-varying flux, the last constraint is not restrictive since a stochastic solution
constructed for the constant flux case can be incorporated into a Duhamel solution.

Define again the solution point and time as ðx2; ~qÞ, and discretize the backward
time axis into M equal increments, Dq. Once a RW is launched, its first
impingement on one of the boundaries, x2Z0 or x2ZH, will occur in a time of the
order of tHZH 2

0 =ð2aÞ, where tH/T. Since the same flux acts on both
boundaries, the interaction of the set of N RWs with both boundaries (launched
from ðx; ~qÞ) is equivalent to interaction with a single boundary. In other words,
for each time-interval, [jDq,(jC1)Dq), jZ0,1,., MK1, all of the RWs reaching
either x2Z0 or ZH0 can be binned together; by this approach, the analysis
leading to (4.18) still holds.

Thus, we replace j0 in (4.18) with j, the probability of exit through either
x2Z0 or H0, where j is governed by

vj

vq
C2a

v2j

vx22
Z 0; ð4:25Þ

with j(0, q)Z1, j(H0, q)Z1 and j(x2, T )Z0, where x22[0, H ] and q2[0, T ).
Since j;q=ð2aj;x 2x 2

ÞZO½H 2
0 ð2aqÞK1�/1, then, for 0%q(TKH 2

0 =ð2aÞ, (4.25)
simplifies to j;x 2x 2

Z0, with the corresponding solution, jZ1. Using this solution
in (4.18) finally yields

hðx2; ~qZ 0Þz3l0
2a

_S0T

Dq
: ð4:26Þ

The analytical solution follows at once via a lumped analysis

hðt ZTÞZ 2 _S0T

H0

: ð4:27Þ

Again equating the stochastic and analytical solutions in (4.26) and (4.27), we
obtain a relationship between 3l0 and the time-step Dq,

3l0 Z
4aDq

H0

Z
d22Dq
H0

: ð4:28Þ

Consistent with the result in (4.23), the required displacement, 3l0, is
proportional to d2Dq=xs, where the x2 length-scale, xs, in the present case is H0.
Again, this result suggests that numerical treatments using ~3~l0Zc0d

2
Dq=H0,

preserve O(3) error for particle interactions with Neumann boundaries.
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(iii) Time-varying Neumann conditions

In linear problems, the above results can be extended to allow stochastic
solution of time-dependent Neumann problems. The approach uses a Duhamel
integral solution, which, for example, in the problem discussed in §4b(i), assumes
the form (Carslaw & Jaeger 1959)

hðx2; tÞZ _Sð0Þzðx2; tÞC
ðt
0
zðx2; tKsÞ d

_SðsÞ
ds

ds; ð4:29Þ

where z(x2, t) is the solution given by (4.21), stated in terms of forward time,
tZTKq, with _S0 having magnitude 1. Here, the time-varying boundary flux is
given by _SðtÞ.
5. Global solution of mixed Dirichlet–Neumann problems: Method III

This section proposes a second, global approach for tackling mixed initial
boundary value scalar transport problems. For simplicity, we initially describe a
whole-time-domain formulation and subsequently discuss a time-partitioned
solution approach, suitable for both linear and nonlinear problems.

As discussed in §5b, the proposed approach is computationally equivalent to a
global application of Method II. Conceptually, however, an essential difference,
rooted in the treatment given random walk interactions with Neumann
boundaries, differentiates the techniques. In Method III, non-homogeneous
Neumann boundaries are made homogeneous and a slightly modified version of
Method I, allowing standard reflections from these boundaries, is then applied
(with Neumann conditions entering via surface Taylor expansions). In Method
II, as described earlier, RWs sample non-homogeneous Neumann boundaries
during the process of reflection.

As a preliminary, we state the stochastic solution of Method I in global form.
Thus, discretize the spatial domain D into N0 sub-areas (sub-volumes in three-
dimensional problems), the surrounding boundary dD into Ns discrete lengths
(areas), and again, for simplicity, divide the time-interval [0, T ) into M equal
increments, Dq. Finally, define NMZN0$M and NTZNs$M, and assume that at
each time-step, discrete values of both h and the source strength, f, are associated
with each of the N0 sub-regions in D.

The local solution in (3.5) can then be stated in global form as

fhgZGfggCHffgKMffg; ð5:1Þ

where the NM!1 vector {h} is defined as {h}Z[{h(1)},{h(2)},., {h(M)}], and
where each {h(j)} represents the set ofN0 scalar values extant overD at qjZ(jK1)Dq.
Likewise, {f} is the discreteN0!1 vector of initial values on dQf, {g} is theNT!1
vector of boundary values on dQ, and {f} is theNM!1 vector of source magnitudes
over Q. Finally, the matrices G, H and M, having dimensions NM!NT, NM!N0

and NM!NM, respectively, are determined by straightforward application of the
local solution represented by (3.5), carried out at allN0 spatial evaluation points in
D, during each instant, qjZ(jK1)Dq, jZ1,2,.,M spanning [0, T ).
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Shifting now to formulation of Method III, two steps underlie the approach.
First, a vector of surface scalar magnitudes, {hs}, extant on dQZdD!(0, T ], is
related to associated sets of normal surface flux magnitudes, f _Sg2dQ, and
subsurface scalar magnitudes, ĥ2Q, via Taylor expansions

fĥgZ fhsgCAf _Sg: ð5:2Þ
Second,Method I is applied to generate a second linear systemrelating fĥg and {hs},

fĥgZ ĜfhsgCĤffgKM̂ffg; ð5:3Þ
where the overhead carets emphasize that thesematrices are generated by launching
RWs only from the set ofNs$M subsurface locations associated with {h}. (Note, the
dimensions of each term in (5.2) and (5.3) are as follows: fĥg^NT !1,
fhsg^NT !1, f _Sg^NT !1, ffg^N0!1, ffg^NM!1, A^NT !NT ,

Ĝ^NT !NT , Ĥ^NT !N0 and M̂^NT !NM).
Next, combining (5.2) and (5.3) and solving for {hs} yields a closed system of

the form

fhsgZ ½IKĜ�K1$½ĤffgKM̂ffg�K½IKĜ�K1$Af _Sg: ð5:4Þ
For example, in the case where the Neumann and Dirichlet portions of dD, dD2

and dD1, respectively, are fixed in time, the vector {hs} contains N1$M known
and N2$M unknown elements, where N1 and N2 are the respective number of
discrete elements comprising dD2 and dD1 (with N1CN2ZNs). Likewise, the
vector f _Sg contains N2$M known and N1$M unknown elements. Thus, (5.4) can
in principle be solved for all (N1CN2)$MZNT unknowns. Given this solution,
which in itself may be useful, for example, in inverse problems, a whole-field or
local solution can then be obtained, for example, by application of Method I.
(a ) Homogeneous Neumann conditions and Method I

In order to generate, via Method I, the matrices Ĝ, Ĥ and M̂ in (5.3),
homogeneous Neumann conditions must be imposed on dQ1ZdQ2![0, T ), the
Neumann portion of dQ. (No provision exists for treating non-homogeneous
Neumann conditions via Method I.) Although apparently not discussed in the
literature, the stochastic solution in (3.5) in fact allows imposition of zero-flux
boundary conditions. This is seen most easily by considering Method II.
Specifically, in the case where the boundary D is subject to both Dirichlet and
zero-flux Neumann conditions, and where an individual RW impinges on the
Neumann boundaries q times prior to reaching a Dirichlet boundary, the formula
in (4.5) assumes the form

hðx; ~qÞzbðYqC1; qqC1ÞC3l0ð2aÞK1
Xq
pZ1

_SðYp; qpÞK
XqC1

pZ1

ðqp
qpK1

f ðcðqÞ; qÞdqK
XqC1

pZ1

Mp;

ð5:5Þ
where again, b(YqC1, qqC1) is the value of h at the location, (YqC1, qqC1), where
the RW first reaches either a Dirichlet boundary or the final time slice, and
where all fluxes, _S, are zero. Thus, it is clear that imposition of zero-flux
conditions on dQ2ZdD2![0, T ) does not alter the Markov character of the
individual random walks used to construct a local solution; on taking
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Table 1. Comparison of a global version of Method II and Method III.

feature global Method II Method III

solution points M$Ns M$Ns

RW stopping criterion first hit on dD1 first hit on dD1

RW interaction with
Neumann boundary

displace RW normally into D
by distance 3l0 and sample

local flux _S

treat boundary as homogeneous—
perform standard reflection

error associated with
Neumann boundary
interaction

O(3l 0) O(Dn)
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expectations at each of the space-time solution points associated with fĥg,
one recovers (5.3) (or equivalently, considering individual elements of fĥg,
equation (3.5)).
(b ) Equivalence of Methods II and III

Method III and a global version of Method II, both applied to generating the
system in (5.3), are compared in table 1. As shown, the computational cost,
indicated by consideration of the first three rows in the table, is comparable for
both approaches. As also shown, respective errors incurred by RW interactions
with Neumann boundaries are O(Dn) and O(3l0), where Dn, the Taylor
expansion distance, is a truncation error. Thus, by choosing Dn to be of the
order of 3l0, it is clear that, computationally, both approaches are equivalent.
(c ) Time-sequential algorithm for nonlinear and linear problems

A time-sequential algorithm, applicable to either nonlinear or linear problems,
represents a combination of the nonlinear algorithm described in §3d and the
solution described in §5. In particular, we use the same sequential approach
described in §3d: Method I is applied, in turn, to successive increments,
DQjZD!(tj, tj,CDt] of the space-forward time domain QZD!(0, T ]. Over
each such increment, the method in §5a is then applied.

Thus, considering in detail the solution over DQj, we again have two
independent relationships involving the vectors of instantaneous near-surface
and surface scalar magnitudes, fĥðjÞg and fhðjÞ

s g, respectively, and the
corresponding vector of surface fluxes, f _SðjÞg,

fhðjÞ
s gZ fĥðjÞgKAðjÞf _SðjÞg; ð5:6Þ

and

fĥðjÞgZ Ĝ
ðjÞfhðjÞ

s gCĤ
ðjÞfhðjK1ÞgKM̂

ðjÞff ðjÞg; ð5:7Þ
where (5.6) represents the instantaneous system obtained via surface Taylor
expansions and (5.7) is the instantaneous version of (5.3), the system obtained
by executing the backward-in-time stochastic solution of Method I. Again,
the forward time increment over which RWs sample boundary values of h is
ðtj ; tjCDt�; where random walk paths are determined using the backward-time
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approach of Method I. In addition, the final condition on each such solution
corresponds to the solution obtained over the previous forward time-step; thus,
as shown above in (5.7), {f} in (5.3) is replaced by {h(jK1)}. Finally, the matrices

Ĝ
ðjÞ
; Ĥ

ðjÞ
and M̂

ðjÞ
are those obtained via the Method I stochastic solution over

(tj, tjCDt]; in nonlinear problems, the transport properties are again determined
by quasilinearization.
6. Boundary conditions and spatially focused solutions

Stochastic solution methods provide a potentially powerful tool for investigating
scalar transport. The purpose of this section is to illustrate the importance of
determining a problem’s physical structure prior to setting up a stochastic
solution. This initial assessment serves two important purposes. First, it allows
proper formulation of an efficient, spatially focused stochastic solution. Second, it
provides reliable boundary conditions on the stochastic solution.

For purposes of illustration and owing to its relatively rich structure, we focus
on solution of the periodic Graetz problem in which the scalar, h, evolves within
a fully developed laminar flow, subject to both a time-periodic variation at an
inlet, dDi, and position-dependent variations on upper and lower boundaries of a
wide rectangular duct. The assumption of fully developed laminar flow is used for
illustrative purposes only and is not limiting; as long as coupling between the
scalar and the velocity fields is weak, the velocity field, u, whether developing or
fully developed, laminar or turbulent, can be computed independent of the scalar
transport problem.

For simplicity, a homogeneous initial condition is assumed and the volumetric
source term, f (x, q) in (3.1), is zero. Finally, non-dimensional terms are denoted
with a tilde.

The non-dimensional form of the problem considered is stated as follows:

v~h

v~q
C~b$~V~hZK~PeK1

l
~V
2
~h on QZD!½0;TÞ; ð6:1Þ

~hð~x; ~TÞZ ~fð~xÞZ 0 on dQf ZD!f~qZ ~Tg; ð6:2Þ

~hð~x; ~qÞZ ~gð~x; ~qÞ on dQZ dD!½0; ~TÞ; ð6:3Þ
where

Pel Z
U0l0

2a0

; ð6:4Þ

is the Peclet number based on the input disturbance wavelength l0ZU0/u0, U0 is
the characteristic speed of the flow, u0 is the inlet disturbance frequency, and
where ~xZx=l0, ~qZqu0 and ~bZK~uZKu=U0. Two other dimensional para-
meters arise, the streamwise length-scale, L0, and the height, H0, of the channel;
throughout, we assume that H0/L0ZO(1).

It turns out that the Peclet number, Pel, features prominently in this
problem. In particular, Pel determines the structure of the core region outside
the developing boundary layers, where Case I described below corresponds to
the limit Pel[1, and where Case II applies when Pel/1. Importantly, in both
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Figure 5. Example of characterizing a problem’s structure prior to initiating a focused stochastic
solution.
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instances, under the assumption that the boundary layer thickness remains
significantly smaller than the cross-stream dimension, H0, spatially focused
stochastic solutions of the boundary layer regions can be set up. By contrast,
when boundary layer growth is rapid enough such that dmax/H0ZO(1), use of
a focused stochastic solution domain is obviated. Here, in order to deal
with error associated with a typically unknown downstream boundary
condition, consideration of the exit distribution for Brownian trajectories from
the solution domain becomes particularly important (see §3c(i)). In the
following, we define ~3ZdðL0Þ=H0, where d(L0) is the characteristic boundary
layer thickness at L0.
(a ) Case Ia: Pel[1; ~3/1; 0%x1=l0(1

When Pel[1, the structure of the problem is as depicted in figure 5. This
subsection focuses on the non-boundary layer domain labelled region I, while §6b
treats region III. In both cases, it is assumed that the boundary layer thickness at
the end of the solution domain, d0Zd(L0), has not grown to a significant extent
relative to the cross-stream dimension, H0. While one can clearly solve for the
core scalar field via a non-stochastic numerical attack, in order to clearly expose
the problem’s structure, an analytical approach is preferred. Thus, as depicted in
figure 5, depending on the length of the duct, L0, one, two or three distinct
regions within the core (non-boundary layer) region can be identified. In the first
(region I), which begins at the point where boundary layer growth is initiated,
x1Z0, the axial length-scale, L1, corresponds to the wavelength, l0ZU0/u0, of
the input disturbance in h; likewise, the inverse disturbance frequency, uK1

0 ,
determines the associated time-scale.

Thus, the leading-order forward-time equation, accurate to OðPeK1
l Þ,

governing the core flow in region I follows directly from (6.1)–(6.3),

v~h

v~t
C ~u

v~h

v~x1
Z 0: ð6:5Þ

The near-inlet scalar field thus propagates in wave-like fashion, with diffusive
smearing representing a second-order effect. The leading-order solution, obtained
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via characteristics, is given by

~hð~x1; ~x2; ~tÞZ ~hð0; ~x2; ~tK~x1=~uð~x2ÞÞ: ð6:6Þ
Importantly, for stochastic solutions limited to or encompassing 0!x1l0, (6.6)

provides an outer condition, accurate to OðPeK1
l Þ, on the boundary layer adjacent

to x2Z0 (and for that adjacent to x2ZH0).
(b ) Case Ib: ~Pel[1; ~3/1; x1/l0TPel

The time-scale now corresponds to the characteristic diffusion time, tsZl20=a,
required to smooth peaks in the input variation in h, while the length-scale still
equals l0. This case again describes the conditions extant in core region III of
figure 5, where the left boundary, x1z~Pell0, corresponds to the product of U0 and
ts. Thus, rescaling (6.1) and (6.2), we obtain the equation governing ~h in region III,

~PeK1
l

v~h

v~t
C ~u

v~h

v~x1
ZPeK1

l

v2~h

v~x21
; ð6:7Þ

where the Oð~PeK1
l ~32Þ cross-stream diffusion term has been neglected. Thus, the

core solution, which again would serve as an approximate outer boundary
condition on a stochastic-based solution of the region III boundary layer
development problem (accurate to Oð~PeK1

l Þ, is
~hð~x1; ~x2; ~tÞZ ~hN; ð6:8Þ

where ~hN is the ambient scalar magnitude within the flow.
Regarding the core problem in region II, treatment of this part of the problem

requires inclusion of both the time and advective rates of change terms and the
axial diffusion term. If a stochastic-based boundary layer solution is desired here,
the simplest approach would use a numerical or analytical solution of the core,
initiated from the inlet, followed by a focused stochastic solution over the
streamwise range of interest.

Finally, in closing discussion of Case I, we note that the assumption that the
boundary layer remains thin over the axial length L0, is precisely stated as

dðL0Þ
H0

Z ~Pe
1=2
l

l0

H0

� 	1=2 L0

H0

� 	1=2

/1:

For ~Pel[1, this assumption is satisfied under a variety of conditions, for
example, when l0/H0/1 or when l0/H0/O(1), (where, as stated above,
L0/H0ZO(1)).
(c ) Case II: ~Pel/1; ~3/1; x1/l0ZO(1)

This case applies in the near-inlet region and arises under conditions where the
axial diffusion length-scale, xdiffZ(2a/u0)

1/2, is much larger than the disturbance
wavelength, l0. In particular, taking the ratio of these scales shows that
l0=xdiffZPe

1=2
l . Under such conditions, typified, for example, by high-frequency

input conditions, the wavy near-inlet variation in h becomes diffusively smeared
over a few wavelengths.
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Recognizing that l0 still represents the axial length-scale and that the
appropriate time-scale is tdiff, we obtain the dimensionless equation for ~h within
the core

v~h

v~t
C2~Pel~u

v~h

v~x1
Z

v2~h

v~x21
; ð6:9Þ

where again the Oð~3Þ cross-stream diffusion term is neglected. The leading-order
solution, accurate to O(Pel), is given by

ĥZRe ~h0exp K

ffiffiffi
2

p

2
ð1C iÞ

ffiffiffiffi
~u

p
~x1C i~u~t

� �� �
; ð6:10Þ

where ĥZ ~hK~hN and ~uZ2Pel. In analogy with Stoke’s solution for viscous
diffusion of vorticity near an oscillating flat wall (Panton 1996), the present
solution shows that, to leading order, the core scalar field, ĥ, exhibits a damped,
wave-like variation in magnitude.
7. Summary

Three stochastic-based methods have been presented for solving unsteady scalar
transport problems on bounded domains. The results, grouped according to
Method number, are as follows:

(Ia) A standard (Friedman 1975), backward-in-time solution to a Fokker–
Planck equation is adapted to scalar transport problems, subject to
Dirichlet conditions. The method, which has an intuitive geometric basis
and been well studied within the mathematical community, has not
received much attention by engineers and applied scientists. This paper
attempts to make the method more accessible to these latter groups.

(Ib) Three techniques are proposed for treating the practically important
problem in which Dirichlet boundary conditions are a priori unknown on
a portion of the problem boundary. The most rigorous of these rests on
calculation of the exit probability for RWs leaving the solution domain
through the uncharacterized boundary.

(Ic) A simple method, based on quasilinearization, is outlined for tackling
nonlinear transport problems, subject to Dirichlet conditions.

(IIa) Grigoriu & Samorodnitsky (2003) method for solving steady mixed
boundary value problems is extended to allow local, i.e. pointwise,
solution of unsteady mixed problems. The method, which uses a simple
reflection process for RWs impinging on Neumann boundaries, offers a
straightforward alternative to existing local time-based approaches.
Equally important, it is shown that Method II is equivalent to
Milshtein’s low-order scheme (Milshtein 1997) for mixed IBVPs; this
equivalence provides the method with a rigorous theoretical basis.

(IIb) Method II is used to derive a probabilistic-based analytical solution to
Neumann problems; the solution incorporates the exit probability for
RWs impinging on these boundaries. In two limits, using appropriate
values for the reflection distance, 3l0, the solution exactly matches
continuum analytical solutions. Practically speaking, the technique offers
Proc. R. Soc. A (2007)
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a new and apparently novel approach for tackling both Neumann and
Dirichlet problems (where application to the latter class of problems will
be reported in a separate publication).

(IIc) The above comparison of probabilistic and continuum analytical
solutions leads to consistent expressions for the off-set distance, 3l0,
used to reflect impinging RWs from Neumann boundaries. In the
cases examined, 3l0 is shown to be proportional to an incremental
diffusion distance,

ffiffiffiffiffiffiffiffiffiffiffi
2aDq

p
, where 2a is the scalar diffusivity and Dq is

the computational time-step size.
(IIIa) A second, whole-field solution to mixed IBVPs is proposed. The method

combines boundary Taylor expansions with Method I to arrive at a
system of equations in the set of unknown scalar magnitudes and
unknown surface fluxes extant, respectively, on Neumann and Dirichlet
boundaries. The resulting linear system can then be solved via standard
numerical approaches.

(IIIb) By choosing the Taylor expansion distance, Dn, to be of the order of 3l0,
it is shown that Method III and a global version of Method II are
computationally equivalent.
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