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Structure and particle transport in second-order Stokes flow
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Second-order streaming in a thin fluid layer driven by one or two opposed, tangentially oscillating wavy
walls is theoretically investigated. In contrast to the well-studied problem of oscillatory flow past a stationary
boundary, the present problem is subject to a nonhomogeneous second-order boundary velocity condition. A
combination of steady Reynolds stresses and boundary forcing thus drives the streaming flow; indeed, under
most conditions, boundary-forced flow dominates Reynolds-stress-driven flow. The first part of the paper
examines parametric effects on second-order flow structure. Under low-Reynolds-stress conditions and during
single-boundary forcing, flow structure remains essentially independent of all parameters, including the Stokes
layer thickness, the fluid layer thickness, and the forcing wave form. Three approximations to the full second-
order solution, valid under low-Reynolds-stress conditions, are used to explain these results. In the case of
dual-boundary forcing, no corresponding universal behaviors are observed; flow structure exhibits sensitivity
to all problem parameters. The second part of the paper investigates particle transport during quasistatic
second-order streaming. Here, slow, superposed, large-amplitude oscillations of one wall produce the time-
dependent, quasisteady flows of interest. Collective particle motion in the direction of large-scale boundary
displacement and filamentary motion in the opposite direction, features consistent with transport in traveling
waves @E. Moses and V. Steinberg, Phys. Rev. Lett.60, 2030 ~1988!#, characterize short-time transport.
Long-time or asymptotic transport, in contrast, is characterized by particle attraction or repulsion to or from
period-one elliptic points and attraction toward limit cycles on the Poincare´ map.

PACS number~s!: 47.15.Gf, 47.90.1a
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I. INTRODUCTION

Second-order streaming produced by oscillating so
boundaries, oscillatory flow over solid boundaries, or fr
surface wave motion plays an important role in wav
induced mass transport@1,2#, formation of marine bottom
topographies@3,4,5#, heat transfer@6,7#, acoustic levitation
~see, e.g.,@8#!, and mass transfer@9#, and presumably plays
significant role in acoustic particle agglomeration~see, e.g.,
@10#!. Steady Reynolds stresses have traditionally been id
tified as the primary mechanism driving such flows. Th
picture holds that Reynolds stresses within near-boundar
interfacial Stokes layers induce cellular flow within th
Stokes layer. Due to a nonzero slip velocity at the Sto
layer’s outer edge, an outer flow is produced whose chara
is determined by the streaming Reynolds numbers
5Û`

2/v̂n̂, whereÛ` is a characteristic speed,v̂ is the oscil-
lation frequency, andn̂ is the kinematic viscosity. For Res

@1, the outer flow assumes a boundary layer structure, w
for Res!1, the outer flow exists as an extended Stokes fl
~see, e.g.,@11,12#!. In the present problem, where we lim
attention to Res!1, secondary flow is determined bytwo
physical mechanisms: Reynolds stresses within the Sto
layer, and boundary forcing due to the no-slip boundary c
dition at the oscillating boundary.

Earlier theories of second-order streaming near w
walls have focused exclusively on the case where a sin
wavy boundary remains fixed relative to a semi-infinite, o
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cillatory flow @3–5#. Lyne @3# considered second-orde
streaming in the limits where oscillation amplitudes (Â) are
much smaller and much larger than the wall wavelength (l̂),
e!1 and e@1, respectively, wheree5Â/l̂. Vittori @5#
adapted Lyne’s@3# analysis to the case where wall protr
sions consist of small sinusoids superposed on a larger
mary sine wave~where the latter was treated by Lyne!. She
also extended Lyne’s model by obtaining solutions valid
arbitrary values ofÂ/l̂. Kaneko and Honji@4# also extended
Lyne’s analysis by considering higher-order corrections
ĥ0 / d̂, where ĥ0 is the wall amplitude andd̂5An̂/v̂ is the
Stokes layer thickness. In this case, theoretical predicti
were qualitatively consistent with flow visualization dat
Soon after, Kaneko@13# reported numerical solutions for th
same problem. Earlier work by Schlicting@14#, Longuet-
Higgins@1#, Stuart@11#, and Riley@12# provided much of the
conceptual framework for these later studies.

This paper develops a two-dimensional theory of stea
streaming within a finite fluid layer, driven by one or tw
opposing oscillatory wavy boundaries. The asympto
model is appropriate in the limit where the streaming Re
nolds number Res!1, and assumes that 1@e@ew , where
ew (5ĥ0 /l̂) is the nondimensional wall amplitude. Th
work is motivated by a desire to better understand sc
transport across fluid gaps bounded by either regular or
dom surfaces, which in turn are subject to either regular
random vibration. We limit attention to periodic forcing, an
in the first half of the paper extend earlier work@3–5,13# by
examining the effects of fluid layer thickness, Stokes la
thickness, forcing wave form, driving frequency ratio, a
opposing wall offset on secondary flow structure. A k
6606 ©2000 The American Physical Society
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PRE 61 6607STRUCTURE AND PARTICLE TRANSPORT IN SECOND- . . .
finding, applicable under low-Reynolds-stress conditio
concerns the insensitivity of single-boundary-driven flow
variations in the first three parameters. Three approximat
to the full second-order solution, valid under low-Reynold
stress conditions, are derived and used to explain these
sults.

In the second half of the paper, we initiate study of lon
range mass transport induced by slow, superposed quasi
oscillations of one wall. While this type of transport has be
investigated in generic Stokes flows~see, e.g.,@15#!, it has
not been examined in second-order Stokes flows. Here
identify a pair of flow bifurcations, characterized by cros
channel stagnation streamlines ‘‘jumping’’ two wall wav
lengths along a boundary, and occurring when crests
valleys on opposing walls pass through vertical alignment
the critical mechanism mediating long-range particle tra
port. We then show that short-time transport, occurring
the slow ~quasistatic! oscillation time scale, is consisten
with observed transport in traveling waves and that lo
time ~asymptotic! transport is dominated by agglomeratio
or repulsion to or from moving elliptic points, or by periodi
collective rotation, also about moving elliptic points. The
observations are interpreted in nonlinear dynamical term

II. PROBLEM FORMULATION: SINGLE
OSCILLATING BOUNDARY

Second-order streaming within fluid layers bounded
opposing wavy walls is characterized by a number of len
scales. In the simplest case, which we treat here, both w
have the same wavelength and amplitude and are subje
tangential forcing of the same amplitude. In this instan
five length scales can be identified: the wall wavelengthl̂,
the wall amplitudeĥ0 , the amplitude of oscillationÂ, the
characteristic Stokes layer thicknessd̂5An̂/v̂, and the mean
depth of the fluid layerĤ. Based on these scales, four ind
pendent parameterse5Â/l̂, Ab5l̂/ d̂, ew5ĥ0 /l̂, and H

5Ĥ/l̂ arise, indicating in turn the relative magnitude of pa
ticle displacements, the relative penetration of unsteady
ticity into the surrounding fluid, the relative height of wa
protrusions, and the relative width~aspect ratio! of the fluid
layer. By comparison, second-order streaming within se
infinite fluid domains bounded by a single wavy wall is cha
acterized by four length scales and three independent pa
eters@3–5#, while steady streaming about compact cylinde
and spheres in infinite domains is described by three len
scales and two independent parameters@11,12#.

We initially develop the solution for steady second-ord
flow produced by a single oscillating boundary and then
tend this result to the case where both boundaries oscil
Thus, consider two-dimensional flow within a finite flu
layer driven by an oscillating wavy wall, as shown in Fig.
For simplicity, we assume that both walls have the sa
wavelength and wave amplitude,l̂ and ĥ0 . It should be
noted, however, that the formulation can be modified
handle the more general case where each wall has a un
wavelength and amplitude. All lengths are nondimension
ized using the wall wavelength, while time is nondimensio
alized usingv̂:
,
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~x,H,e,ew ,d!5l̂21~ x̂,Ĥ,Â,ĥ0 ,d̂ !, t5v̂ t̂ , ~1!

wherex̂ is the position vector. In addition, velocity and th
stream function are nondimensionalized using the wall
locity amplitude,

u5~Û`!21û, c5~Û`l̂!21ĉ, ~2!

where Û`5Âv̂. Note that dimensional quantities are d
noted with carets.

Taking the curl of the momentum equation and using
above definitions, we obtain the equation governing vortic
transport:

] t¹
2c2e

]~c,¹2c!

]~x,y!
5b21¹4c. ~3!

As a point of comparison with earlier work,b is roughly
equivalent to the the parameterM25e22 Res introduced by
Riley @12# while Ab is inversely proportional to the param
eter k used by Lyne@3# (Ab5A8p/k). Similarly, e corre-
sponds to the parameterkR introduced by Lyne.

The time- and space-dependent heighth of the oscillating
boundary, obtained via a Galilean transformation betwe
wall-fixed and laboratory fixed coordinates, is given by

y5h~x,t !5ew cos$k@x2eF~ t !#%, ~4!

wherek52p is the dimensionless wave number for the w
andF(t) is the time-dependent tangential boundary displa
ment. In the following, we expressF(t) as

F~ t !5 (
n51

`
an

n
sinnt. ~5!

The velocity of the lower boundary,uB5F8(t) î , is purely
horizontal and leads to the following conditions onc:

]yc5F8, ]xc50, y5h~x,t !. ~6!

Similar conditions, withF8(t) replaced by zero andy by H
2y, are imposed on the upper surface.

We assume that 1@e@ew and expandc in e and ew as
follows:

c5c001ec101ewc011e2c201eewc111¯ . ~7!

FIG. 1. The flow geometry.
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6608 PRE 61RUSSELL G. KEANINI
This expansion differs from those used in@3,5#, where the
stream function was expanded inew and steady streamin
was obtained as anO(e) correction to theO(ew) solution.
Thus, the earlier solutions apply when 1@ew@e. Transfer-
ring the boundary conditions in Eq.~6! to y50 and similar
conditions on the upper boundary toy5H, we obtain the
following hierarchy of problems atO(e Iew

J ):

] t¹
2c IJ1SIJ5

1

b
¹4c IJ , ~8!

]yc IJ5FIJ~ t !, y50, ~9!

]xc IJ50, y50, ~10!

]yc IJ50, y5H, ~11!

]xc IJ50, y5H. ~12!

Here,SIJ is a vorticity source term atO(e I ,ew
J ) andFIJ is a

corresponding horizontal boundary velocity. It is read
shown thatS005S015S105S2050. At O(eew), however, the
source term assumes the form

S1152k•“3~u00•“u011u01•“u00!, ~13!

where for convenienceS11 is expressed in terms of theO(1)
and O(ew) velocity fields, u00 and u01, respectively. The
boundary velocities at each order are given by

F005F8~ t !5 (
n51

`

an cosnt, ~14!

F1050, ~15!

F0152cos~kx!]yyc00, ~16!

F2050, ~17!

F1152kF~ t !sin~kx!]yyc00. ~18!

As seen above, theO(e) andO(e2) problems are homo
geneous so thatc105const andc205const. Note too that
transferring boundary conditions to the plane surfacesy50
and y5H allows a simpler formulation than the conform
transformation approach used by Lyne@3#. Transferring
boundary conditions in, e.g., Eq.~6! from y5h(x,t)
5ew cos$k@x2eF(t)#% to y50 is carried out by Taylor ex-
panding derivatives ofc abouty50 and by expanding the
function h(x,t) for small e. Thus, for example,
]yc(x,h,t) 5 ]yc(x,0,t) 1 ]yyc(x,0,t)@ew cos(kx)1ewekF
sin(kx)#1O(e2ew). Inserting Eq.~7! into this expression then
leads directly to the conditions in Eqs.~14!–~18!.

A. O„1… solution: generalized Stokes solution

The O(1) solution to Eqs.~8!–~12! describes flow pro-
duced by a flat plate, driven by a cyclic tangential veloc
F8(t). To simplify derivation of higher-order solutions, w
state theO(1) solution in terms of thex velocity component
~where they component is zero!:
u005 (
n51

`

@An exp~nnỹ1 int !1Bn exp~2nnỹ1 int !

1An* exp~nn* ỹ2 int !1Bn* exp~2nn* ỹ2 int !#.

~19!

Here complex conjugates are starred,ỹ5Aby, H̃5AbH,
nn5An/2(11 i ), and

An5
an/2

12exp~2nnH̃ !
, Bn52

~an/2!exp~2nnH̃ !

12exp~2nnH̃ !
.

It is readily shown that whenuB5F8(t)5cos(t) and H̃
→`, this solution simplifies to Stokes’ classical solution f
flow in a semi-infinite region, driven by a flat, sinusoidal
oscillating plate.

B. O„ew… solution

The O(ew) solution satisfying Eqs.~8!–~12! is given by

c015cos~kx! (
n51

`

@xn~ ỹ!exp~ int !1xn* ~ ỹ!exp~2 int !#,

~20!

where

xn~ ỹ!5A1
~n! exp~vnỹ!1A2

~n! exp~qỹ!1A3
~n! exp~2vnỹ!

1A4
~n! exp~2qỹ!, ~21!

and where the coefficientsA1
(n) , A2

(n) , A3
(n) , and A4

(n) are
given in the Appendix.

Again, it can be shown that in the case whereF8(t)
5cos(t) and H̃→`, the solution in Eq.~20! simplifies to
Lyne’s @3# O(ew) solution.

C. O„eew… solution: steady streaming due to arbitrary forcing

We first decomposec11 into steady and unsteady parts

c115c11
~s!1c11

~ t ! , ~22!

where

b21¹4c11
~s!52k•“3~u00•“u011u01•“u00!usteady,

~23!

]yc11
~s!52g̃1~x!]yyc00usteady, ]xc11

~s!50, y50,

]yc11
~s!50, ]xc11

~s!50, y5H,

and

] t¹
2c11

~ t !2b21¹4c11
~ t !5k•“3~u00•“u01

1u01•“u00!uunsteady, ~24!

]yc11
~ t !52g̃1~x!]yyc00uunsteady, ]xc11

~ t !50, y50,

]yc11
~ t !50, ]xc11

~ t !50, y5H,
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and whereg̃1(x)5k sin(kx)F(t).
Since we are interested only in the steady solutionc11

(s) ,
and since this problem is subject to two nonhomogeneit
we obtain the solution by superposing two subproblem
each subject to a single nonhomogeneous term:

c11
~s!5c11

~1!1c11
~2! , ~25!

where

b21¹4c11
~1!52k•“3~u00•“u011u01•“u00!usteady,

¹4c11
~2!50,

]yc11
~1!50

]yc11
~2!52g̃1~x!]yyc00usteady

, y50,

]xc11
~1!5]xc11

~2!50, y50,

]yc11
~1!5]yc11

~2!50, y5H,

]xc11
~1!5]xc11

~2!50, y5H.

Physically, c11
(1) is the second-order flow component pr

duced by steady Reynolds stresses whilec11
(2) is the compo-

nent driven by the nonhomogeneous boundary velocity.
The final solution is given by

c11
~s!5sin~kx! (

n51

` H ~a1
~n!1b1

~n!!e2qỹ1~a2
~n!1b2

~n!!ỹe2qỹ

1~a3
~n!1b3

~n!!eqỹ1~a4
~n!1b4

~n!!ỹeqỹ

1(
j 51

4

@Cj
~n! exp~K jnỹ!1D j

~n! exp~M jnỹ!#J 1c.c.,

~26!

where the coefficientsq, a1
(n) –a4

(n) , b1
(n) –b4

(n) , Cj
(n) , D j

(n) ,
K jn , andM jn are given in the Appendix. It is important t
note that the problem associated with an oscillating bound
is not equivalent to the problem associated with an oscil
ing fluid over a stationary boundary. The difference arise
O(eew), where the nonhomogeneous boundary condition
Eq. ~23! does not appear in the latter case.

III. STEADY STREAMING PRODUCED
BY TWO OSCILLATING WAVY BOUNDARIES

We consider the simplest case where upper and lo
boundaries are driven at single frequenciesv̂u and v̂ l , re-
spectively, and require thatv̂ l /v̂u5P where P52,3,4,... .
This condition allows us to construct a steady second-o
solution by superposing the steady solution for sing
frequency forcing at a single boundary. In particular, at a
instant and over periodT̂52p/v̂m @wherev̂m5min(v̂u,v̂l)#
the cross-termsu00

u
•“u01

l , u00
l
•“u01

u , u01
u
•“u00

l , and
u01

u
•“u00

u in S11 and the termsFu(t)c00,yy
l andFl(t)c00,yy

l in
the tangential velocity boundary conditions have zero ste
components. Thus, superposing a modified version ofc11

(s) in
Eq. ~26!, which we denote asc11

(su) ~and which correspond
s,
s,

ry
t-
at
n

er

er
-
y

y

to flow produced by the upper boundary!, with c11
(s) , we

obtain the overall solution:

c11
~s!5c11

~sl!1c11
~su! , ~27!

where c11
(sl)5c11

(s) @from Eq. ~26!#. Letting g5v̂u/v̂ l and
noting that the indexn51, c11

(su) is obtained from the solu-
tion in Eq. ~26! by introducing the following substitutions
into the coefficientsa1

(1)–a4
(1) , b1

(1)–b4
(1) , Cj

(1) , D j
(1) , K j 1 ,

andM j 1 in Eq. ~26!: ~i! replacen1 with Agn1 ; ~ii ! replace
a1 with ga1 ; ~iii ! replaceb with gb; ~iv! replacev1 with
Aq2/g1 ig; ~v! replaceq with q/Ag; ~vi! premultiply any
term containingn by g @excepting those already mentione
in ~i!–~v!#; ~vii ! replaceỹ with H̃2 ỹ; and ~viii ! replacex

with 12x. Note thatn15A1
2 (11 i ) and that the magnitude

of b andq52p/Ab are determined byv̂ l , the frequency of
the lower boundary. Also note that when crests and vall
on upper and lower walls are not vertically alignedx is re-
placed by

x8511f2x, ~28!

wheref is the horizontal distance between any given cr
on the lower wall and the nearest crest lying to the right
the upper wall. We will refer tof as thewall offset.

IV. APPROXIMATE SECOND-ORDER SOLUTIONS

This section briefly describes three approximations to
full second-order solutionc11

(s) in Eq. ~26!, valid in the limit
where Reynolds-stress-driven flow is negligible. Using s
perposition and the substitutions given in the last section
three approximations are adapted to handle dual-boun
forcing ~see below!. The approximate ranges of validity ar
noted in each case.

A. Zero-Reynolds-stress approximation

As noted, the second-order solution in Eq.~26! represents
the superposition of two flow componentsc11

(1) and c11
(2) ,

wherec11
(1) , given by

c11
~1!5sin~kx! (

n51

` H a1
~n!e2qỹ1a2

~n!ỹe2qỹ1a3
~n!eqỹ

1a4
~n!ỹe2qỹ1(

j 51

4

@Cj
~n!exp~K jnỹ!

1D j
~n! exp~M jnỹ!#J 1c.c., ~29!

is the component produced by steady Reynolds stresses
c11

(2) , given by

c11
~2!5sin~kx! (

n51

`

~b1
~n!e2qỹ1b2

~n!ỹe2qỹ1b3
~n!eqỹ

1b4
~n!ỹe2qỹ!1c.c., ~30!
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is the component produced by the nonzero second-orde
locity on the oscillating boundary. It is found that ov
1022&b&103 andH*0.2,c11

(s) is well approximated by the
second component alone, i.e.,

c11
~s!'c11

~2!5c11
~ZRS! . ~31!

We will term this thezero-Reynolds-stress approximatio
~ZRS!.

B. Simplified zero-Reynolds-stress approximation

Examining individual terms inc11
(2) , we find for H*0.7

and 1022&b&103 that b1
(n)!1, b3

(n)!1, andb4
(n)!1, while

b2
(n)→ ian

2nnk/4n. Thus, over this range ofH andb, the ZRS
approximation can be simplified to yield

c11
~s!'c11

~SRS!5sin~kx! (
n51

`

~b2
~n!1b2

~n!* !ỹ exp~2qỹ!.

~32!

Considering briefly the accuracy of this approximation,
observe that atb51 and over 0.7<H<2, the maximum
relative error E between c11

~SRS! and c11
(s) ~evaluated at

1003100 equally spaced points over 0<x<1, 0<y<H,
and at incrementsDH50.25!, does not exceed 1.6%. Simila
accuracy is generally observed atb50.01, 0.1, 10, 100, and
1000, and over the same range ofH. It should be noted,
however, that at certain values ofb andH, E can be as high
as 220%; visual comparisons of associated streamline
terns suggest that the overall agreement betweenc11

~SRS! and
c11

(s) is nevertheless satisfactory. We will refer to this as
simplified zero-Reynolds-stress approximation~SRS!.

C. Semi-infinite domain approximation

A third approximation toc11
(s) , strictly valid when the

fluid layer extends an infinite distance above a single os
lating boundary, can be obtained by replacing the bound
conditions in Eqs.~11! and ~12! with

c IJ→0, y→` ~33!

for I ,J50,1, or, equivalently, by allowingH→` in Eq. ~26!.
In either case, the steady second-order solution is given

c11
~s!'c11

~SID!52sin~kx!
bk

A8
ye2ky(

n51

` S an
2

An
D ~34!

~where, for later use, the identityky5qỹ has been used!.
The accuracy of this approximation is comparable to tha
the SRS approximation. For example, while the maxim
relative error atb51 andH50.7 is relatively high, approxi-
mately 70%, the approximation improves dramatically w
increasing gap heightH; E decreases from 19% at (b,H)
5(1,1) to 0.83% at (b,H)5(1,3). Similar trends are gene
ally observed atb50.01, 0.1, 10, 100, and 1000. Agai
visual comparisons suggest that the approximation is rea
able even whenE is large. We will refer to this as thesemi-
e-

at-

e

l-
ry

y

f

n-

infinite domain approximation~SID!; as with the SRS ap-
proximation, the SID approximation can be used forH
*0.7 and 1022&b&103.

V. RESULTS AND DISCUSSION

We will first focus on flows produced by single-bounda
forcing, briefly examining the effects of gap heightH and
Stokes layer thickness~as embodied in! b on second-order
flow structure. As a prelude to future studies focused
scalar transport, we will also consider the effect of drivi
wave form on second-order flow, examining the flow’s r
sponse to sinusoidal, sawtooth, and square-wave forcing.
then turn to flows produced by dual-boundary forcing, inve
tigating the effects ofH, b, the frequency ratiog, and the
upper boundary offsetf on second-order flow structure
Where appropriate, we compare the approximate soluti
described above with the full second-order asymptotic so
tion in Eq. ~26!. Finally, in the next section, we examin
particle transport associated with superposed, quasis
boundary oscillations.

Prior to discussing the results, we note that the flow
tween two opposing wall wavelengths~possibly offset by
distancef! can be mapped to a torusT2. Poincare´’s index
theorem@16#, relating the number hyperbolic~saddle! (Nh),
elliptic ~center! (Ne), and parabolic (Np) critical ~stagna-
tion! points on the torus, is thus given byNe2Nh2Np/2
50. All steady second-order flows, regardless of the mag
tudes ofb, H, f, andg are found to satisfy this relationship

A. Parametric effects on second-order flow structure:
single-boundary forcing

As demonstrated in the next section, studying flow str
ture ~i.e., the distribution of critical points and the arrang
ment of interconnecting separatrix streamlines! and investi-
gating changes to this structure due to changing fl
parameters provide an essential bridge to understanding
and transport phenomena in low-Reynolds-number flow.
the case of single-boundary forcing, second-order flow str
ture is determined by three parameters,H, b, andf. Here,
we limit attention to the case where the offsetf between the
upper and lower boundaries is zero. The bifurcation diagr
in Fig. 2, obtained for zero offset, shows that over most
the computationally accessible parameter space, the sec
order flow is characterized by two counter-rotating ce
Four-cell flows, by contrast, while appearing over a re
tively wide range ofH, are limited to a small range ofb.
@Note that round-off error~64-bit precision! becomes signifi-
cant for H*5.5 andH&0.01. Thus, calculated results de
scribed below are limited to 0.01&H&5.5.#

As a point of reference, we note that four-cell flows a
characterized by three hyperbolic points~per wall wave-
length!, located at the intersection of separatrix streamlin
separating each cell, six parabolic points~per wall wave-
length!, located at the corners and midpoints of the upper a
lower boundaries, and four elliptic points, located at t
nominal center of each cell. Refer to Fig. 3. In the ca
shown (f50), three vertical separatrices connect oppos
pairs of parabolic points, with separation occurring at (x,y)

5(0,0), (1
2 ,H), and~1, 0!, and reattachment occurring at th
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other three points. In slight contrast, two-cell flows conta
no hyperbolic points, six parabolic points~all located at the
same points on the upper and lower boundaries!, and two
elliptic points.~Note that hyperbolic points are unresolved
Fig. 3. Also note that the indices for corner parabolic poi
are effectively equal to14. This reflects the fact that in map
ping the flow to a torus, the boundary atx5N maps to the
boundary atx5N11. See Ref.@15# for further discussion
and for a description of critical points in two-dimension
flows.!

The first significant finding is that four-cell flow does n
have the same physical origin as four-cell flow observed
the low-e limit treated by Lyne@3#. In the latter case~and in
the high-Res limit !, four-cell patterns are produced by no
negligible velocities at the edge of thin Stokes layers. He
the origin of four-cell patterns becomes apparent whenc11

(1) ,
c11

(2) , and c11
(s) are plotted across the channel onx50.25;

refer to Fig. 3. Sincec11
(1) corresponds to the flow compone

produced by steady Reynolds stresses whilec11
(2) is the com-

ponent produced by boundary forcing, then it is clear t
four-cell flow appears when both components are of com
rable magnitude. In contrast, a similar comparison~not
shown! demonstrates that two-cell flow exists whenc11

(2)

@c11
(1) . @In cases where the offset between the upper

lower boundaries is zero,c11
(s) has the form c11

(s)

5sin(kx)G(y). Thus, plots like those in Figs. 3~b! and 3~d!
provide a complete description of the second-order fl
structure.#

The next important set of findings, applicable under lo
Reynolds-stress conditions, concerns the insensitivity
second-order flow structure to fluid layer thickness, Sto
layer thickness, and forcing wave form. The first two resu
are discussed in this subsection, and the last, which
holds when Reynolds stresses are non-negligible, is
scribed in the next subsection. Figure 4 summarizes the
result, showing that overH*0.7, the relative vertical posi
tion of elliptic points (yc /H) satisfiesyc /H51/(2pH). We
can use either the SRS or SID approximations, Eq.~32! or

FIG. 2. Bifurcation diagram for flow driven by a single boun
ary. Wall offsetf50.
s

n

,

t
a-

d

-
f
s
s
so
e-
st

~34!, respectively, to explain this result. Using the SRS a
proximation, we see that, since the vertical velocity comp
nent equals zero onx5 1

4 andx5 3
4 , elliptic points appear at

points on these lines where]yc11
(s)']yc11

(SRS)50, i.e.,

]yc11
~SRS!5sin~kx0! (

n51

`

~b2
~n!1b2

~n!* !e2ky~12ky!50,

~35!

wherex05 1
4 or 3

4. Thus, approximate center locations appe
at

yc5k215
1

2p
. ~36!

The same result follows using the SID approximation, E
~34!.

The second result is summarized in Fig. 5 where it
shown that over a fairly large portion of the parameter spa
1022&b and 0.2&H&5.5, second-order flow structure

FIG. 3. Typical four-cell flows, single-boundary forcing. Plo
~b! and ~d! show stream function components onx50.25: c11

(s)

solid line;c11
(1) , dash-dotted line;c11

(2) , dashed line.b51025 in ~a!
and~b! and 531025 in ~c! and~d!. H50.2 in all four plots. Note
that in the streamline plots~a! and~c! the direction of fluid flow is
clockwise in left, lower primary cells and counterclockwise in righ
lower primary cells. Similar flow patterns hold in all subseque
plots. For convenience in plotting, the abscissas and ordinate
most streamline plots have been rescaled by factors of 100
100/H, respectively.
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also independent of the Stokes layer thicknessb ~results for
H.3.5 andb.1 are not shown!. This result is explained by
noting that, over this range of parameters,c11

(s) is again well
approximated by Eq.~31!. Inspection of b1

(n) –b4
(n) then

shows thatb1
(n) andb3

(n) are proportional tob while b2
(n) and

b4
(n) are proportional tob1/2. Thus, since a factorb multi-

plies all terms inc11
(2) , the condition defining the vertica

position of elliptic points,]yc11
(s)']yc11

(2)50 ~on x5 1
4 and

3
4 ! is independent ofb. This feature is also consistent wit
the SRS and SID approximations, Eqs.~32! and~34!, respec-
tively, which also show thatc11

~SRS! and c11
~SID! are propor-

tional to b.

FIG. 4. Flow structure during single-boundary forcing und
low-Reynolds-stress conditions (c11

(2)@c11
(1))—effect of fluid layer

thicknessH. Comparison plots show relative elliptic point location
(yc /H) predicted by c11

(s)(111) and c11
(SRS) ~or equivalently

c (SID)! ~sss!. Here,x50.25,f50, andb51.

FIG. 5. Flow structure during single-boundary forcing und
low-Reynolds-stress conditions (c11

(2)@c11
(1))—effect of Stokes

layer thicknessb. Comparison plots show relative elliptic poin
locations (yc /H) predicted byc11

(s) andc11
(ZRS) . Here,x50.25 and

f50.
Representative comparisons of the SRS~or equivalently,
the SID! and ZRS approximations with the full second-ord
solution ~26! are shown in Figs. 4 and 5, respectively. A
three approximations provide comparable accuracy under
conditions shown. Note that in the case of single-bounda
driven flow none of these approximations predicts four-c
flow, since, as mentioned, four-cell flow reflects a balan
between the Reynolds stress flow componentc11

(1) and the
boundary-forced componentc11

(2) . ~See below for full flow
field comparisons during dual-boundary forcing.!

B. Effect of forcing wave form

Here we investigate the effect of boundary-forcing wa
form on the structure of the second- order flow. While o
methods are based on those described in@15,17#, it appears
that the effect of forcing wave form onsecond-orderStokes
flow has not been considered. For single-boundary forc
the leading order boundary velocity can be written as

u005eaF8a~ t ! ~37!

whereF8a(t) represents a boundary velocity wave form a
ea is a normalizing parameter designed to isolate wave fo
effects. Following Swanson@17# and Jana, Metcalfe, and O
tino @15#, we investigate the effect of sinusoidal, sawtoo
and square-wave forcing using two of the three methods t
describe: ~i! choose eachea so that all three wave forms
have equal average deviation from the mean boundary ve
ity ~which is zero in the present case!; and ~ii ! chooseea so
that the leading term in the Fourier expansion of each w
form is identical. See@15# for further details.

Examining flows over a wide range ofH andb, including
regimes where Reynolds stresses are non-negligible, we
that the forcing wave form has no observable effect
steady streaming patterns. Figure 6 shows a represent
result in the case where Reynolds stresses are smalb
51). This finding is consistent with theoretical and expe

r

r

FIG. 6. Effect of forcing wave form on flow structure. Relativ
elliptic point positions shown alongx50.25 with b51 andf50.
Single-boundary forcing.
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mental observations of complex non-second-order Sto
flows within driven circular and rectangular cavities@15#,
and is also consistent with Swanson’s@17# computational
study of eccentric cylinder flow. While Jana, Metcalfe, a
Ottino @15# provide a semiqualitative explanation for th
result, here, in cases where Reynolds stresses are neglig
we can pinpoint the exact cause. Whenc11

(2)@c11
(1) , we can

approximatec11
(s) asc11

(2) and thus expressc11
(s) in the form

c11
~s!'sin~kx! (

n51

`

$an
2@ f n

~1!~H !gn
~1!~y!1 f n

~2!~H !gn
~2!~y!1 f n

~3!

3~H !gn
~3!~y!1 f n

~4!~H !gn
~4!~y!#%, ~38!

where an
2f n

(1)5(bn
(1)1bn

(1)* ), an
2f n

(2)5(bn
(2)1bn

(2)* ), an
2f n

(3)

5(bn
(3)1bn

(3)* ), an
2f n

(4)5(bn
(4)1bn

(4)* ), gn
(1)5exp(2ky),

gn
(2)5Aby exp(2ky), gn

(3)5exp(ky), and gn
(4)

5Aby exp(ky), and wherean is thenth Fourier coefficient in
the expansion forF8(t). It is readily shown thatf n

(1)– f n
(4) do

not depend onan . Thus, since the functionsf n
(1)– f n

(4) and
gn

(1)–gn
(4) are identical for each wave form, and since t

coefficientsan are multiplied by constant normalization fa
tors, it is clear that over the range ofH and b wherec11

(2)

@c11
(1) , all three wave forms, normalized using either no

malization method, will produce essentially identical seco
order flow patterns.

While flow structure is independent of wave form, th
magnitudes of the streaming velocities induced by each w
form do exhibit slight differences. See Fig. 7 for a repres
tative result. In particular, it is found that the characteris
horizontal velocity between the lowest-lying elliptic poin
and the forced boundary is highest during sawtooth forc
and lowest during square-wave forcing. This result can
explained, again under typical low-Reynolds-stress con
tions, using Eq.~38!. Since horizontal~and vertical! velocity
components produced by each wave form are proportiona
the square of the respective Fourier coefficientsan , then by
comparing dominant first terms we see that

FIG. 7. Effect of forcing wave form on maximum value ofc11
(s) .

Single-boundary forcing withb51 andf50.
es
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where the subscripts st,c, and sq refer, respectively, to saw
tooth, sine, and square-wave forcing.

C. Parametric effects on second-order flow:
dual-boundary forcing

We arbitrarily define a reference flow as that correspo
ing to H51.0, g52.0, f50.0, andb51.0. Note that the
upper and lower boundaries are driven by single frequenc
gu and g l , respectively, wheregu /g l[g. Also note that
when f50 wave crests on opposing walls are vertica
aligned, while atf50.5, crests on one wall are verticall
aligned with valleys on the other.

In general, flows forced by both boundaries are sensi
to all flow parameters. Here, we briefly describe structu
changes associated with variations in wall offsetf, driving
frequency ratiog, and fluid layer thicknessH.

1. Variations in wall offset

Comparing representative flow sequences under co
tions where the Reynolds stress flow component is neglig
and non-negligible~Fig. 8!, we see that significant Reynold
stresses (b51025) produce large central cells~one per wall
half wavelength!. When the Reynolds stress component
small (b51), by contrast, no such cells appear and the fl
is dominated by boundary-forced cells near each wall. F
lowing @15#, we refer to central cells not contacting eith
boundary assecondarycells and cells in direct contact with
boundary asprimary cells. Although not shown, we note tha
pairs of flowsFf andF2f , corresponding to equal right an
left offsetsf and 2f aboutf50 ~or aboutf50.50!, are
reflectionally symmetric@18# about the y axis to thetime-
reversedflows F2f

21 and Ff
21, respectively~where Ff

21 is
obtained fromFf by multiplying both velocity components
in the latter by21!.

2. Driving-frequency variations

As the ratio of driving frequenciesg increases, the flow
induced by the higher-frequency boundary begins to do
nate that produced by the lower-frequency boundary; refe
Fig. 9. Two observations provide insight into this intuitive
reasonable result. First, the second-order tangential velo
at either boundary is proportional to the rate of work done
boundary displacements against leading order viscous sh
i.e., ]yc1152k sin(kx)F(t)]y

2c00 ~at y50!. Since this term is
proportional tog ~at the higher-frequency boundary!, then so
is the associated energy input. Second, since the bound
forced stream function componentc11

(2) is proportional tog3/2

and sincec11
(2)@c11

(1) in the flows depicted in Fig. 9, then th
magnitude of the stream function associated with the hi
frequency boundary also varies asg3/2. A similar result is
also observed whenb is small, i.e., when Reynolds stress
are significant~result not shown!. More generally, flows
driven by both boundaries assume the character of sin
boundary-driven flows wheng*5. Finally, note from Fig. 9
that a flow FK having g5K is reflectionally symmetric
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FIG. 8. Effect of Reynolds
stresses on dual-boundary-drive
flow structure. b51 ~Reynolds
stresses negligible! in the six up-
permost plots while b51025

~Reynolds stresses non-negligible!
in the lower six plots. g52 in
all plots. Flow patterns shown in
Figs. 8–10 span the channel in th
vertical direction and span on
wall wavelength in the horizonta
direction. Horizontal and vertica
dimensionless length units ar
scaled by factors of 100 and
100/H, respectively.
ac

ions

s-

or

o

-

ow
~about the x axis! to the flowF1/K whereg51/K ~and where
H, f, andb are equal!.

3. Channel height variations

As shown in Fig. 10, forH>1, two pairs of isolated,
apparently noninteracting primary cells appear near e

FIG. 9. Effect of frequency ratiog during dual-boundary
forcing—low-Reynolds-stress conditions. Comparison plots sh
c11

(s) ~solid line! and semi-infinite domain approximationc11
(SID)

~dashed line!. Here,H51.0,b51.0,f50, andg has the following
values: ~a! 5; ~b! 2; ~c! 1

2; ~d! 1
5. See caption to Fig. 8 for expla

nation of horizontal and vertical length units.
h

boundary. For 1021&H&1 and moderateb, the Reynolds
stress component is again negligible and height reduct
either eliminate lower primary cells~whenfÞ0!, or in the
casef50, squeeze them toward the lower boundary~see,
e.g., Fig. 8!. A similar effect is observed when Reynold
stress-driven flow is significant (b51025). In this case, de-
pending on the offset, lower primary cells are squeezed

w
FIG. 10. Effect of fluid layer thicknessH during dual-boundary

forcing—low-Reynolds-stress conditions. Comparison plots sh
c11

(s) ~solid line! and semi-infinite domain approximationc11
(SID)

~dashed line!. Heref50.0,b51.0,g52, andH has the following
values: ~a! 5; ~b! 3.66; ~c! 2.33; ~d! 1. See caption to Fig. 8 for
explanation of horizontal and vertical length units.
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eliminated by central Reynolds-stress-driven~secondary!
cells ~again, see Fig. 8!.

VI. QUASISTATIC FORCING AND LONG-RANGE
PARTICLE TRANSPORT

In this final section, we examine qualitative features
particle transport produced by large-scale quasistatic osc
tion of either wall, where the slow~quasistatic! oscillation is
superposed on the rapid oscillations driving steady stream
flow. A number of studies have examined particle transp
associated with unsteady,nonsecondary Stokes flows
@17,19–22#, capillary waves@23,24#, traveling waves@25–
27#, Rossby waves and irrotational flows@28#, and water
waves@1#. However, it appears that no work has been
ported on transport within secondary Stokes flows.

Although beyond the scope of the present paper, qua
tative descriptions of particle transport are possible, e.g.,
ing the transport theory developed by Wiggins and
workers ~see, e.g.,@29#!. Since hyperbolic points clearly
oscillate with the quasistatic motion of the upper bounda
manifolds of corresponding fixed points intersect an infin
number of times to form lobes; cycle-to-cycle transport b
tween adjacent cells is comprised of the contents of th
lobes@29#. We also note that Ryrie@30# investigated trans-
port in spatially periodic, time-modulated flows and appli
the approach described by Rom-Kedar, Leonard, and W
gins @31# to quantitate the transport.

Here, quasistatic oscillations are produced by slow
varying the wall offsetf:

f~ t !5L01Lt sin~e tt !, ~39!

where L0 is the center of oscillation~measured relative to
x50!, Lt is the oscillation amplitude,e t5v̂s /v̂ f is the di-
mensionless oscillation frequency, andv̂s and v̂ f are the
dimensional slow and fast oscillation frequencies. Qua
static conditions prevail when the viscous diffusion tim
scale is much shorter than the large-scale oscillation per
i.e., when l̂2/ n̂T̂s!1, where T̂s52p/v̂s . Equivalently,
based on definitions given earlier, quasistatic conditions e
if e t!2pb21. This condition is well satisfied here sincee t
5131029 while b51025. Particle paths are calculated b
integrating the following system via a fourth-order Rung
Kutta scheme:

ẋ5]yc11~x,y,z!, ẏ52]xc11~x,y,z! where ż5e t .
~40!

Initially, an array of 1024 particles is distributed uniform
over 0<x<1, 0,y,H; the position of each particle is the
determined at 5000 equal time incrementsDt, where Dt

51.818̄3106 and where one quasistatic oscillation peri
equals 550Dt.

Flow patterns and particle positions shown correspond
those extant over one or more wall wavelengths.~Note that,
over theNth wavelength on the lower boundary,N<x,N
11.! Hereafter, the leftmost and rightmost central~second-
ary! cells in wavelengthN will be referred to as LC(N) and
RC(N), respectively; when portions of three central cells a
present, the middle cell will be referred to as MC(N). Upper
boundary cellsare smaller primary cells located betwe
f
a-

g
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-

ti-
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-

,

-
se

g-

y

i-

d,

st
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to

e

central cells and the upper boundary; each of these occu
about 20% of the channel width and will be similarly d
noted as LB(N), MB(N), and RE(N). Likewise, lower
boundary cells are located between central cells and
lower boundary and will be denoted as LBl(N), MBl( N),
and RBl(N).

A. Bifurcations leading to long-range transport

We define long-range particle transport as transport
curring over more than one wall wavelength. Although n
merous computational experiments have been performed
focus on representative results obtained under one set of
ditions: b51025, H51, g52. The short-time and
asymptotic transport characteristics described below are
served for 1025&b&1024, 0.3&H&2, and 1

4 &g&4.
Importantly, we find that long-range transport is possib

only under the following conditions: ~1! the Reynolds-
stress-induced flow component must be comparable to
much larger than the boundary-forced component, and~2!
the pair of bifurcations depicted in Fig. 11 must occur. R
ferring to Fig. 11, we see that the flow undergoes two bif
cations as the wall offset passes throughf50.5. Whenf
50.49, stagnation streamlines connecting parabolic po
on opposing boundaries form a right-running stair-step p
tern~from bottom to top! across the channel. We will refer t
these as cross-channel stagnation streamlines~CCSL’s!. No-
tice that limited flow can occur between each trio of ce
encompassed by adjacent CCSL’s. Note too that conne
pairs of parabolic points are essentially one wall wavelen
out of phase. Whenf50.50, the unresolved hyperboli
points in Fig. 11~a! shift slightly rightward to (x,y)
5(0.5,0.8) and (x,y)5(0.5,'0.17), and all intercellular
flow ceases. Finally, whenf50.51, cross-channel stagnatio
streamlines form aleft-running stair-step pattern betwee
lower and upper parabolic points, and flow can again ta
place between enclosed trios of cells. Again, pairs of c
nected parabolic points are essentially one wavelength ou
phase. Taken together, we see that this pair of bifurcati
results in stagnation streamlines ‘‘hopping’’ two wav
lengths along a boundary, effectively closing one cro
channel flow path while opening another. Indeed, this bif
cation pair constitutes the key mechanism underlying lo
range transport.

B. Short-time transport

We arbitrarily define early- or short-time transport
transport occurring over 0,t,750Dt, or transport occurring
over approximately one slow oscillation period. Under mo
conditions, the uniform array of particles immediately brea
up into two large, centrally located particle clouds and
least two smaller clouds near the upper boundary. As in
cated in Figs. 12~a! and 12~c!, breakup occurs along separ
trix streamlines between neighboring cells.~Note that quasi-
static boundary motion is left to right in Fig. 12.! Due to the
bifurcations atf50.5, particles in central cells graduall
leak into neighboring lower boundary cells and then unde
filamentary transport on the periphery of adjacent cen
cells.

Filamentary motion is mediated by two mechanism
First, the bifurcations atf50.5 effectively switch one set o
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CCSL’s with another, closing the path between LB(N),
MC(N), and RBl(N) and opening a path between RB(N),
MC(N), and LBl(N). Second, after traveling around the p
riphery of a given central cell, particles accumulate in lo
speed, lower primary cells and in the relatively slow-movi
lower reaches of central cells. The accumulated partic
then appear to serve as secondary particle sources fo
extending filament.@Note, just as left-to-right~LTR! quasi-
static boundary motion induces leftward filamentary parti
transport, right-to-left ~RTL! boundary motion produce
rightward filamentary transport~results not shown!.#

Filamentary transport along cell boundaries has also b
observed by Moses and Steinberg@26# in traveling waves.
As in the present case, they observe filamentary mo
~‘‘backflow’’ ! in a direction opposite the wave vector an
collective particle motion in the direction of wave propag

FIG. 11. Flow bifurcations as wall offset passes throughf
50.5. Cross-channel stagnation streamlines are shown witb
51025, H50.85, andg52. f has the following values: ~a!
0.49; ~b! 0.50; ~c! 0.51. Notice that atf50.49 mass transport ca
occur between the lower primary cell on the left, the central cell
the right, and, to a lesser extent, the upper primary cell locate
the right of the right central cell. All intercellular transport paths a
closed atf50.5, but reopen atf50.51 as shown in~c!. Horizontal
and vertical dimensionless length units are scaled by factors of
and 100/H, respectively.
-

s
the

e

en

n

-

tion. Using Eqs.~28! and~39! and noting thate tt!1 during
initial LTR ~or RTL! boundary motion, we can readily ex
press the stream function associated with upper-bound
motion in traveling wave form,c11

u 5sin(kx2vt2fu)F(y),
where v5Lte t and fu511L0 , and whereF(y) follows
from the solution forc11

(su) . Thus, as is intuitively obvious
rightward ~or leftward! quasistatic boundary motion intro
duces a traveling wave mode into the second-order flow

Minimal transport occurs between central cells and up
primary cells during the early period. Particles initially lo
cated in upper primary cells experience intense mixing a
rapid agglomeration toward each cell’s instantaneous elli
point. Particles within central cells, by contrast, remain re
tively undisturbed and confined to the central region throu
t'750Dt. Inspection of streamline patterns similar to tho
shown in Fig. 11~but encompassing 0<f<1.0! clearly
shows that for all offsetsf, two structural features engende
poor transport to or from upper boundary cells:~1! a CCSL
alwaysseparates any given upper primary cell from the c
tral cell immediately below, and~2! the distance between
pairs of neighboring CCSL’s~measured normal to eithe
CCSL! reaches a minimum at a point between any giv

n
to

00

FIG. 12. Particle transport characteristics withb51025, H
50.85,L050.5875, andLt50.6. Elapsed times equal 40Dt in ~a!
and~b! and 4950Dt in ~b! and~d!. g54 in ~a!,~b! and 3 in~c!,~d!.
Horizontal and vertical dimensionless length units are scaled
factors of 100 and 100/H, respectively.
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central cell and the upper primary cell located above and
the right~whenf,0.5! ~or whenf.0.5, between a centra
cell and the upper primary cell located above and to the le!.

C. Asymptotic transport

Under all conditions tested, particles either accumul
~agglomerate! near, or move away from, oscillating ellipti
points in the flow@see Figs. 12~b! and 12~d!#. Indeed,com-
plete agglomeration at elliptic points is observed at hi
driving frequencies, as shown in Fig. 12~b! (g54). ~Note
that all 1024 particles have accumulated at the elliptic po
shown.! When g53, particles both agglomerate at ellipt
pointsand collect on the periphery of central cells@see Fig.
12~d!#; similar behavior is observed when oscillation amp
tudesLt are relatively small, on the order of 0.15 or le
~result not shown!.

Asymptotic transport can be usefully characterized by
amining Poincare´ sections. Here, Poincare´ maps showing the
positions of all 1024 particles at the end of each slow~qua-
sistatic! oscillation period are determined by mapping p
ticle positions above any wall wavelengthN to the region
above the first wavelength, 0<x,1, 0<y<H. This is
equivalent to determining Poincare´ maps on the torusT2.
~Mapping positions of all particles proves much more info

FIG. 13. Poincare´ sections. Dimensionless lengths are shown
the horizontal axis while dimensionless lengths on the vertical a
are scaled by a factor of 1/H.
to

e

ts

-

-

-

mative than mapping limited numbers of particles. Typical
individual particle motion becomes periodic and correspo
ing Poincare´ maps reveal little concerning overall transpo
characteristics.! The Poincare´ map corresponding to Fig
12~b!, shown at the top of Fig. 13, reveals that agglomerat
within central and upper boundary cells corresponds to
traction toward period-1 elliptic points.@Note that the cen-
tral, left-lying period-1 point indicated in the upper map
Fig. 13 corresponds to oscillating elliptic points in left ce
tral cells LC(N) while the right period-1 point correspond
to oscillating elliptic points in right central cells RC(N).#

The Poincare´ map corresponding to Fig. 12~d!, shown at
the bottom of Fig. 13, indicates that asymptotic particle m
tion toward, then on, the periphery of central cells cor
sponds to attraction toward a limit cycle. The limit cyc
encompasses a period-1 point in the right central cell, wh
again the fixed point corresponds to oscillating elliptic poin
in RC(N). Notice that existence of limit cycles is clearl
indicated in Fig. 12. It is found that particles on the interi
of the limit cycle gradually migrate outward onto the cyc
while nearby outlying particles migrate inward; additionall
individual particle trajectories on the limit cycle are pure
periodic, having the same period as the slow oscillation.
in the previous case~where g54!, particle agglomeration
occurs in a number of upper boundary cells, while agglo
eration within central cells is limited to LC~1!. Again, ag-
glomeration corresponds to attraction toward period-1 el
tic points. Although not shown, under certain condition
particles are repulsed by central elliptic points; this cor
sponds to repulsion from unstable period-1 points.

It appears that neither particle accumulation mechan
~i.e., accumulation at fixed points and on limit cycles! has
been identified in the particle agglomeration literature. W
note that these mechanisms are purely kinematic~i.e., par-
ticle velocities are at all times equal to the local fluid velo
ity! and thus are most likely realized when fluid visco
forces on each particle dominate particle inertial and bu
ancy forces and interparticle collisional momentum trans

In closing, we note that, unlike particle transport in oth
systems, long-range transport here is not mediated by
ticle trapping within translating heteroclinic orbits@25,26,28#
and does not require molecular diffusion@32#. To the con-
trary, long-range transport in this system requires bifurcat
of CCSL’s as shown in Fig. 11.

VII. SUMMARY AND CONCLUSIONS

A model, applicable in the low streaming Reynolds nu
ber limit, has been developed to describe second-o
streaming in an oscillating wavy-walled channel. In contr
to earlier studies@3–5#, the present model considers flo
driven by moving boundaries and is thus subject to a non
mogeneous second-order boundary velocity condition. D
to this condition, the steady second-order flow is driven b
combination of steady Reynolds stresses within the flow
boundary forcing. Under most conditions, the bounda
forced flow component dominates the Reynolds stress c
ponent; Reynolds-stress-driven flow becomes important o
when the characteristic Stokes layer thickness becomes m
larger than the wall wavelength (b!1).

Under single-boundary forcing, the flow can have a tw
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or four-cell structure~per wall wavelength!. Two-cell flow
exists for all computationally realizable channel heig
(0.1&H&5.5) andb*1024, while four-cell flow exists for
0.1&H&2.3 andb&1024. The physical origin of four-cell
flow in the present model differs completely from the we
known mechanisms driving four-cell flow in oscillatory flo
past a stationary wavy wall@3#. Here, four-cell flow arises
due to competition between the boundary-forced a
Reynolds-stress-driven flow components; four-cell flo
never occurs when the boundary-forced component is do
nant.

Three approximations, valid under low-Reynolds-stre
conditions, are derived and compared against the full seco
order solution. For all computationally realizable frequen
ratiosg, all wall offsetsf, and over the rangesH*0.7 and
103*b*1022, all three provide reasonable approximatio
to the full asymptotic solution~under both single- and dua
boundary forcing!.

During single-boundary forcing and under typical low
Reynolds-stress conditions, flow structure is independen
the fluid layer thickness, the Stokes layer thickness, and
forcing wave form. The last result is consistent with obs
vations in non-second-order Stokes flow@15# and can be
quantitatively explained by noting that each wave form lea
to a solution of the formc5 f (x)(n51

` @an
2Fn(H,y)#. Since

each solution differs only in the form of the Fourier coef
cientsan , differences between solutions become negligi
when the coefficients are normalized as described ab
Similar arguments, based on the approximations gi
above, are used to explain the first two results as well.

In contrast to single-boundary-driven flow, flow structu
produced by dual-boundary forcing is sensitive to all flo
parameters, including fluid layer thickness, the offset
tween opposing walls, the ratio of frequencies driving bo
boundaries, and the Stokes layer thickness. It is found t
as the frequency ratiog increases, the flow becomes increa
ingly determined by the higher-frequency boundary; du
boundary flow assumes the character of single-bound
s
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driven flow for g*5 ~or, equivalently, forg& 1
5 !. Structural

differences between flows in which Reynolds stresses
negligible and non-negligible are also highlighted. Here
find that, asb decreases below 1024, Reynolds-stress-driven
central~secondary! cells emerge and squeeze near-bound
~boundary-forced! primary cells toward each wall. At large
values ofb, Reynolds stresses are negligible, central cells
suppressed, and the flow is dominated by boundary-forc
near-boundary cells.

Finally, we investigate particle transport produced by s
perposed large-scale quasistatic oscillations of one bound
Long-range transport occurs only when the Reynolds-str
driven flow component is comparable to the boundary-forc
component and, further, requires two bifurcations of cro
channel stagnation streamlines. The bifurcations occur w
crests pass through vertical alignment with opposing vall
and are characterized by pairs of CCSL’s effectively ‘‘ho
ping’’ two wavelengths along either boundary. Short-tim
transport is characterized by collective particle motion in
direction of quasistatic boundary displacement and filam
tary motion in the opposite direction, features consistent w
transport in traveling waves@26#. Asymptotic particle trans-
port is dominated by three processes:~i! attraction toward
stable period-1 elliptic points,~ii ! attraction toward limit
cycles, and~iii ! repulsion from unstable period-1 ellipti
points. These features apparently have not been reporte
previous particle transport studies.
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APPENDIX: COEFFICIENTS IN LEADING AND
HIGHER-ORDER SOLUTIONS

The coefficientsÃn , B̃n , C̃n , D̃n , Ẽn , andF̃n appearing
in the O(ew) solution ~20! are given as follows:
A4
~n!5

$nn~Bn2An!~vnB̃n2ÃnẼn /C̃n!%

$@~D̃n /C̃n!~vn2q!2~vn1q!#@vnB̃n2ÃnẼn /C̃n#1@~Ãn /C̃n!~vn2q!22vn#@D̃nẼn /C̃n2F̃n#%
, ~A1!

A3
~n!5

nn~Bn2An!2A4
~n!@~D̃n /C̃n!~vn2q!2~vn1q!#

@~Ãn /C̃n!~vn2q!22vn#
, ~A2!

A2
~n!52

ÃnA3
~n!1D̃nA4

~n!

C̃n

, ~A3!

A1
~n!52~A2

~n!1A3
~n!1A4

~n!!, ~A4!

Ãn5exp~2vnH̃ !2exp~vnH̃ !, ~A5!

B̃n5exp~2vnH̃ !1exp~vnH̃ !, ~A6!

C̃n5exp~qH̃!2exp~vnH̃ !, ~A7!
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D̃n5exp~2qH̃!2exp~vnH̃ !, ~A8!

Ẽn5vn exp~vnH̃ !2q exp~qH̃!, ~A9!

F̃n5vn exp~vnH̃ !1q exp~2qH̃!. ~A10!

Here,q5k/Ab andvn5Ak2/b1ni.
Coefficients appearing in theO(eew) solution in Eq.~26! are given below:

Cj
~n!5

inAnAj
~n!* L j

~K jn
2 2q2!2 , ~A11!

D j
~n!5

inBnAj
~n!* L j

~M jn
2 2q2!2 , ~A12!

where

log2 L j5
1
2 @11~21! j 11#, j 51,2,3,4, ~A13!

K1n5nn1vn* , K2n5nn1q, ~A14!

K3n5nn2vn* , K4n5nn2q, ~A15!

M1n52nn1vn* , M2n52nn1q, ~A16!

M3n52nn2vn* , M4n52nn2q. ~A17!

Prior to listing the coefficientsa1
(n) –a4

(n) , we define the following quantities:

D05$2 sinh2~qH̃!12~qH̃!2eqH̃@sinh~qH̃!2cosh~qH̃!#%, ~A18!

N~n!5qH̃2eqH̃@cosh~qH̃!2sinh~qH̃!#P1
~n!1eqH̃$~qH̃!2 sinh~qH̃!1~12qH̃!@qH̃ cosh~qH̃!

1sinh~qH̃!#%P2
~n!1@H̃ sinh~qH̃!#P3

~n!2@qH̃ cosh~qH̃!1sinh~qH̃!#P4
~n! , ~A19!

where

P1
~n!52(

j 51

4

~K jnCj
~n!1M jnD j

~n!!, ~A20!

P2
~n!52(

j 51

4

~Cj
~n!1D j

~n!!, ~A21!

P3
~n!52(

j 51

4

@K jnCj
~n! exp~K jnH̃ !1M jnD j

~n! exp~M jnH̃ !# ~A22!

P4
~n!52(

j 51

4

@Cj
~n! exp~K jnH̃ !1D j

~n! exp~M jnH̃ !#. ~A23!

Based on these definitions,a1
(n) –a4

(n) andb1
(n) –b4

(n) are given as follows:

a1
~n!5

N~n!

D0
, ~A24!

a2
~n!5

@2~qH̃eqH̃2sinh~qH̃!!a1
~n!1eqH̃~12qH̃!P2

~n!1H̃eqH̃P1
~n!2P4

~n!#

2H̃ sinh~qH̃!
, ~A25!

a3
~n!5P2

~n!2a1
~n! , ~A26!
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a4
~n!52qa1

~n!2a2
~n!1P1

~n!2qP2
~n! , ~A27!

b1
~n!5

iqkAb

2n
annnH̃2eqH̃~Bn2An!@cosh~qH̃!2sinh~qH̃!#D0

21, ~A28!

b2
~n!5

$2@qH̃eqH̃2sinh~qH̃!#b1
~n!1H̃eqH̃~ ikAb/2n!annn~Bn2An!%

2H̃ sinh~qH̃!
~A29!

b3
~n!52b1

~n! , ~A30!

b4
~n!52qb1

~n!2b2
~n!1~ ikAb/2n!annn~Bn2An!. ~A31!
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