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This article develops a theoretical model of the two-chamber pressure casting process. In this process,
a molten metal drop, formed by arc melting a solid ingot, falls into a conical crucible attached to a
gas-filled, porous cast mold. An energy-based formulation of the mold-filling process is developed
which focuses on the drop’s motion within the crucible and mold cavity and on pressure evolution
within the mold cavity. The model shows that drop acceleration into the mold depends on three dimen-
sionless parameters, the Euler number, Eu, the Froude number, Fr, and the pressure loss coefficient,
K, across the crucible exit. These parameters are in turn determined by the mold’s permeability to
the process gas, the characteristic initial pressure difference between the interior and exterior of the
mold, the mold thickness, the process gas viscosity, and the metal density. Drop acceleration into the
mold compresses trapped gas within the mold cavity; under most conditions, pressure decay due to
leakage of the trapped gas through the mold occurs at a faster rate than inertial compression. Under
these circumstances, a downward acting pressure force, having a magnitude determined by the Euler
number, acts on the drop. At low Froude numbers, however, gas compression occurs at a faster rate
than leakage-induced decay and the pressure force acts upward, again with a magnitude determined
by Eu. Scaling arguments show that friction and evaporation recoil forces are negligible in deter-
mining drop motion, while surface tension, pressure, drop inertia, and gravity are dominant. In addi-
tion, solidification effects are shown to be negligible.

I. INTRODUCTION

TITANIUM has found increasing use in dental pros-
thetics, principally as an alternative to allergy-producing
casting alloys.[1] Although titanium is difficult to cast using
the lost-wax method,[2] technical improvements have led to
various methods for preparing acceptable clinical dental pros-
theses.[2] Dental appliance casting units can be categorized
as one of two types, depending on how liquid metal is forced
into the cast mold: pressure difference casting units and cen-
trifugal casting machines. This study will consider the for-
mer, focusing in particular on the two-chamber pressure
casting process.

A typical two-chamber casting unit is shown schematically
in Figure 1. Here, the upper and lower chambers within the
casting unit are separated by an impermeable wall, which sup-
ports the cast mold. Both chambers are filled with an inert
gas, typically argon, with the lower chamber pressure main-
tained at approximately 20 kPa (�Pl) and the upper cham-
ber set at approximately 200 kPa (�Pu). Due to the pressure
difference between the mold’s interior and exterior, gas flows
through the mold’s porous bottom wall into the lower cham-
ber. Casting is initiated when a titanium (or, more generally,
a metal) ingot is arc melted within a copper crucible in the
upper chamber; a molten drop eventually forms and falls into

the conical crucible positioned immediately above the mold
cavity. Although the pressure within the upper chamber and
that within the mold cavity are initially equal, once the drop
falls into the crucible, the gas trapped within the mold cav-
ity continues to pass through the porous mold into the lower
chamber. Due to a combination of gas leakage from the mold
cavity and compression due to the drop’s downward motion,
a time-dependent pressure difference, Pu � P(t), is created
across the molten drop.

Considering the dynamics of the drop, it is apparent that
at least two forces drive the molten metal into the mold cav-
ity: the weight of the metal itself and the time-varying pres-
sure difference that develops across the melt. Other forces
that potentially play a role in cast filling dynamics include
surface tension, impulse due to metal evaporation, and fric-
tion. Each of these will be discussed subsequently. With
regard to the pressure force, once a molten drop falls into
the conical crucible above the mold cavity, the drop’s upper
free surface is subject to the relatively fixed pressure, Pu,
within the upper chamber, while the drop’s lower free sur-
face is subject to a time varying pressure, P(t), within the
mold cavity. The cavity pressure depends principally on the
rate of process gas loss from the cavity, which in turn
depends on the mold’s permeability, kg,

[5–8] the gas viscos-
ity, �g, the mold’s thickness, td, the surface area within the
mold cavity available for porous gas transport, Ac, and the
pressure difference, P(t) � Pl, across the mold wall. Previ-
ous work has inappropriately identified the (fixed) pressure
difference between the upper and lower chambers, Pu � Pl,
as the dynamic feature driving metal flow into the mold cav-
ity. In reality, the appropriate pressure difference, and one
of the key dynamic features examined here, is the time-
dependent pressure difference Pu � P(t) across the drop.[9,10]

Although the basic principal of operation is apparent, the
physical processes underlying the two-chamber pressure
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Fig. 1—Schematic of the two-chamber pressure casting process.

casting process are poorly understood. This reflects the rela-
tive complexity of the process: casting occurs rapidly, on
the order of 0.1 seconds or less; the casts are small, having
volumes on the order of 1 cm3; process gas can be trapped
within the mold cavity, leading to cast porosity;[3,4] and solidi-
fication occurs rapidly, possibly affecting cast quality.
Progress in minimizing and controlling cast nonuniformity
requires improved understanding of process physics, and in
particular, an improved understanding of cast metal flow
and mold filling.

The purpose of this article is to theoretically investigate
the two-chamber pressure casting process. We use scaling
arguments to first establish the important physical features
underlying the process. A simple energy-based model of
drop motion and mold filling during casting is then devel-
oped. The analysis and results provide useful physical insight
into the complex features underlying rapid casting of den-
tal prostheses and should provide a framework for future
studies of other dental casting processes.

II. PHYSICAL FEATURES AND SCALING
ARGUMENTS

Prior to formulating a process model, we use scaling analy-
ses[11] to determine the essential physical features underlying
the casting operation. This will provide a fuller understanding
of process physics as well as a basis for developing the
model.

A. Heat Transfer and Drop Solidification

In order to examine the effect of solidification on the cast-
ing process, we estimate the amount of solidification that
occurs at the crucible exit during mold filling. We are par-
ticularly interested in determining if rapid solidification at
this location can significantly slow or even shunt liquid metal
flow into the mold. A straightforward estimate, which pro-
vides an upper bound on the solidification speed, can be
obtained by assuming that the characteristic heat flux from
the drop to the crucible is on the order of the flux, qp, from

the plasma torch to the ingot during melting. Expressing the
energy balance across the moving solidification front, we
have

[1]

where kl and ks are the metal’s liquid- and solid-phase ther-
mal conductivities, �m is the metal density, hsl is the heat
of fusion, n is the local unit normal to the propagating solid-
ification front (directed in the direction of front motion),
and Um is the local solidification front speed. Balancing the
latent heat generation term with either of the conductive
flux terms and estimating the conductive flux as qp, we
obtain

[2]

Given Um, the approximate (maximum) thickness, �s, of the
solidification front at the end of the cavity filling process is
given by �s � Um�fill, where �fill is the time required to fill
the mold. Letting �fill � 10�1 s,[12] taking qp � 106 Wm2,[13]

and using the parameter values in Table I, we find that �s �
5.7 � 10�5 m. Since �s is less than 3 pct of the crucible exit
radius, it is clear that negligible solidification occurs during
cavity filling and that metal flows relatively unimpeded into
the mold.

B. Fluid Friction

Viscous forces between the drop and the crucible and
mold walls play a negligible role in determining drop dynam-
ics. We show this by first estimating the characteristic shear
stress, �, exerted by the crucible wall on the liquid metal:

[3]t � mm 
�w

�n
�

mmUo

d
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�T
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Table I. Parameter Values

Parameter Magnitude Reference

hfg 8.9 � 106 J kg�1 19
hsl 3.88 � 105 J kg�1 19
Hc, Lc 1.0 � 10�2 m 20
kg 1.0 � 10�14 m2 12
kl, ks 2.19 � 10 Wm�1 °C�1 21
Ls 2.5 � 10�2 m 20
Pl 2.0 � 104 Pa 20
Po, Pu 2.0 � 105 Pa 20
Ro 2.5 � 10�3 m 20
Ru 1.5 � 10�2 m 20
td 7.6 � 10�4 m 20
Tg, To 2.5 � 10 °C 20
Tm 1.945 � 103 °C 21
Tb 3.56 � 103 °C 22
Vd 7.06 � 10�6 m 20
Uo 1.0 ms�1 20

m 9.22 � 10�6 m2s�1 21
�g 1.5 � 10�5 Nsm�2 22
�m 1.0 � 10�3 Nsm�2 23
�m 4.54 � 103 Nsm�2 21
� 1.5 � 10 N m�1 23
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where �m is the liquid metal’s dynamic viscosity, n is a coor-
dinate normal to the crucible wall, w is the streamwise veloc-
ity, Uo is the characteristic axial velocity within the crucible
(taken as the characteristic velocity through the crucible
exit), and � is the characteristic viscous boundary layer thick-
ness. The boundary layer thickness is estimated by balancing
the dominant viscous and advective terms in the streamwise
momentum equation, yielding

[4]

where vm is the kinematic viscosity and Ls is the crucible’s
axial length. Thus, the approximate frictional force retarding
drop motion into the cast is Ff � �Asp, where Asp is the char-
acteristic crucible area contacted by the drop; using para-
meter values listed in Table I, we find that Ff � 0.018 N.
Next, we estimate the net pressure force across the drop as
(Pu � Pc)Ao, where Pc is the characteristic pressure acting
on the drop’s lower free surface, and Ao is the area of the
crucible exit. (This estimate follows by first recognizing that
the characteristic upward-acting reaction force exerted on
the drop by the crucible’s lateral walls, Pu(Au � Ao), largely
offsets the characteristic downward pressure force, PuAu, act-
ing on the drop’s upper free surface (Section III–G) Second,
the characteristic downward reaction force exerted on the
drop by the mold cavity’s upper wall, Pc(Ac � Ao), essentially
offsets the characteristic upward pressure force, PcAc, act-
ing on the drop’s lower free surface. Here, Au and Ac are the
cross-sectional areas at the top of the crucible and within
the mold cavity. A force balance on the drop then leads to
the given estimate. Thus, it is found that friction is of neg-
ligible importance when the characteristic pressure force
across the drop, (Pu � Pc)Ao, is larger than 0.018 N (�Ff),
a condition that holds essentially throughout the filling
process (based on inspection of the computed results dis-
cussed subsequently).

Considering briefly the contribution of viscous dissipation
to the drop’s thermal energy balance, it is likewise readily
shown that frictional heating, limited to viscous boundary
layers near each solid surface, is of negligible importance.

C. Surface Tension–Surface Potential Energy

A quality cast requires that the drop maintain its integrity
against external pressure forces during casting. This in turn
requires that surface tension forces are comparable to the
pressure forces. We can show that this condition generally
holds by comparing characteristic surface tension forces on
the drop’s upper and lower free surfaces against the char-
acteristic pressure force across the drop. The upward-acting
surface tension force within the crucible, FSTu, is estimated
as FSTu � �2�Ru cos (), where Ru is the crucible’s upper
radius,  (�26.5 deg) is the conical crucible’s half angle,
� is the surface tension coefficient, and where the contact
angle between the liquid metal and crucible is assumed to
be approximately 0. Similarly, the downward acting force,
FSTl, on the lower free surface is FSTl � 4�Lc, where Lc is
the length of each of the square cavity’s sides. Thus, we find
that surface tension forces are comparable to pressure forces
when the characteristic pressure difference across the drop
satisfies �P � Pu � Pc � FST /Ao � 64 kPa, a condition that

d � A vmLs

Uo

typically holds over a large portion of the filling process.
(Here, FST represents either FSTu or FSTl).

While surface tension forces are comparable to pressure
forces, their principal effect is to maintain the drop’s free
surfaces against pressure, gravity, and inertial forces. In con-
trast, temporal variations in the drop’s surface potential
energy play a negligible role in the drop’s energy budget.
This is shown by comparing the maximum rate of surface
potential energy change with the characteristic rate of work
done by pressure forces:

Based on the parameter values given in Table I, we find that
this ratio is approximately 0.03, showing that surface poten-
tial energy variations are of secondary importance. Here, Uu

is the characteristic velocity of the drop’s upper free surface
and UuAu � UoAo (from continuity).

D. Evaporation Recoil

Due to the drop’s relatively high temperature, the momen-
tum flux due to evaporation from either free surface (eva-
poration recoil) can be significant. The characteristic rate of
metal evaporation is given by ,
where �e and �e are the metal evaporate’s density and veloc-
ity, Ae is the evaporating surface area, is the characteris-
tic rate of heat transfer from the drop’s interior to the
evaporating surface, and hfg is the metal’s latent heat of
vaporization. Given the evaporate velocity, the approximate
recoil force, Fe, can be estimated as Fe � �ev

2
eAe. In order

to estimate �e, we note that evaporate particles thermally
equilibrate with the surrounding process gas within one elec-
tron mean free path of the evaporating surface.[13] Thus,

where Po and To are the ambient pressure and temperature
of the process gas, and R is the gas constant for titanium.
Taking as being on the order of qpAe � qpAu, which again
likely represents an overestimate, and using the parameter
values in Table I, we find that Fe � 2 � 10�6 N. Since
this is again several orders of magnitude smaller than the
characteristic pressure force acting across the drop, (Pu �
Pc)Ao, evaporation recoil plays a negligible role in cast fill-
ing dynamics.

E. Mold Gas Flow and Gas Heating during Filling

The model developed subsequently assumes that argon
within the mold cavity remains isothermal during the fill-
ing process. This assumption is valid if the characteristic
thermal diffusion time, �d, for gas within the cavity is much
longer than the cavity fill time, �fill. Although significant gas
flow may be induced as the liquid metal flows into the cavity,
it is not expected that significant convective heat transfer
occurs within the gas. Specifically, gas motion will likely
assume a form somewhere between one of two extremes:
(1) for a highly permeable bottom wall, gas motion will be

Q
#

re �
Po

RTo

Q
#

m
#

e � reveAe � Q
#
/hfgm

#
e

d

dt
 ∫A 

sdA

∫ �A

A
Pu � ndA

�
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tfill
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largely uniaxial and directed toward the bottom; and (2) for
a slightly or a moderately permeable bottom, gas motion will
be largely laminar and circulatory. In the first case, it is clear
that since minimal convective mixing occurs, in-gas heat
transfer will be conduction dominated. In the latter case,
since the metal drop’s lower free surface remains smooth
(Section III–G) and since the cavity walls are also smooth,
no apparent mechanism exists for creating strong convec-
tive mixing within recirculating gas pockets. Thus, again,
gas heat transfer is largely determined by conduction. Com-
paring the diffusive time scale, given by , where

a is argon’s thermal diffusivity, with a characteristic fill
time of �fill (�0.1 s[11]), we find that �d/�fill � O(102), show-
ing that the isothermal gas approximation is valid.

F. Gas Flow through Cavity Wall

As molten metal flows into the mold cavity, process gas
trapped within the cavity quickly leaks through the cavity’s
porous bottom (into the surrounding lower chamber). Assum-
ing that the bottom’s porosity is isotropic, gas transport
through the wall is governed by Darcy’s law:

[5]

where v is the local gas velocity, kg is the gas permeability,
�g is the gas viscosity, and P is the local pressure.

G. Free Surface Curvature and Rayleigh–Taylor
Instability

The model developed subsequently assumes that the drop’s
upper and lower capillary surfaces remain flat throughout
the filling process. We can estimate the characteristic
curvature of the drop’s free surfaces using the Young–Laplace
equation:

[6]

where P
 denotes local external pressure at the upper (Pu) or
lower (P) interface, Pi is the corresponding interfacial pres-
sure within the drop, n is the local outward unit normal to

the interface, and is the surface 

divergence operator. The characteristic surface curvature,
, can be estimated using the characteristic pres-

sure difference, �Ps, across either interface:

[7]

Considering first the upper interface (within the crucible),
since flow within the crucible is largely inviscid (discussed
subsequently), the pressure variation, �Ps, between the upper
surface and crucible exit can be estimated via Bernoulli’s
equation as (where the
hydrostatic contribution, �mgLs � 103 N m�2, is of the same
order). Thus, since the upper chamber pressure Pu is nearly
two orders of magnitude larger, metal within the crucible
remains essentially isobaric at the upper chamber pressure.

�Ps � rmUo
2 � 5 � 103 N m�2

§H
# n � Rs

�1 �
�Ps

s

Rs
�1(�§H � n)

§H � ex � ex
d

dx
	 ey

d

dy

Pa � Pi � s§H
# n

v � �
kg

mg
§P

td � Lc
2/aa

From Reference 7, it is clear then that curvature is small.
(Note, since drop volumes are larger than the mold cavity
volume, the drop’s upper surface remains within the cru-
cible throughout the filling process.)

Considering the lower interface, we are confronted with
the problem of estimating pressure loss across the crucible
exit. Large pressure losses lead to relatively flat lower free
surfaces, while small pressure losses lead to large surface
curvature, particularly as cavity pressure decays. Since pres-
sure loss is unknown, we note indirect evidence that lower
surface curvature remains small, i.e., significantly smaller
than the inverse cavity width, : if the curvature was large,
i.e., on the order of , then the drop would quickly impinge
and cover the lower porous boundary. Process gas would
then be trapped, leading to significant cast porosity. Since
porosity is generally small, however, premature impingement
appears unlikely, suggesting that the lower interface remains
relatively flat.

Considering next the lower free surface’s stability, since a
high density fluid (liquid metal) overlies a low density fluid
(process gas), the surface may be subject to Rayleigh–Taylor
capillary instability.[14] Here, disturbances on the free surface
remain stable for wavelengths shorter than a critical wave-
length, �c, given by

[8]

where �g is the gas density. Using the parameters in Table I,
we find that �c � 11 cm, which is significantly larger the
largest (diagonal) dimension within the cavity. Thus, the
interface remains stable during cast filling.

H. Flow Characteristics

Each metal drop is formed by melting metal ingot with
a plasma torch. Due to high torch heat fluxes (on the order
of 106 Wm�2), metal surface temperatures approach the
metal’s boiling point and thermocapillary stresses produced
by surface temperature gradients become negligible. Although
plasma flow over the drop drives flow within the drop, this
flow is likely confined to near surface boundary layers.[15]

This is due to low liquid metal kinematic viscosity and the
low viscosity of typical process plasmas. Thus, flow within
the drop prior to impingement on the crucible is largely
inviscid. As the drop falls into the conical crucible (where
the cone’s interior half-angle is approximately 26.5 deg), it
impinges on the sides of the crucible and on the relatively
small exit hole at the bottom of the crucible (where the ratio
of the crucible’s exit to entrance areas is approximately 1/36).
However, based on previous work,[16] it is expected that gen-
eration and mixing of vorticity during impingement will not
significantly alter the inviscid nature of drop flow. Thus, flow
within the drop appears to remain inviscid as it falls into the
crucible and fills the mold.

III. PROCESS MODEL

Based on the physical considerations discussed in Section
III, we can now formulate a relatively simple energy-based
model of liquid metal motion within the crucible and mold

lc � 2p c s

g(rm � rg)
d 1/2

Lc
�1

Lc
�1



METALLURGICAL AND MATERIALS TRANSACTIONS B VOLUME 36B, APRIL 2005—287

Fig. 2—Process variables and dimensions.

during mold filling. A detailed sketch of the process is shown
in Figure 2. The instantaneous mechanical energy balance
for fluid within the crucible is given by

[9]

where Vs � Vs(t) is the volume of liquid metal within the
crucible, u is the liquid metal velocity field, P is the associated
pressure field, is the area of the crucible’s exit, As � As(t)
is the liquid metal’s upper free surface area (within the cru-
cible), and n is the outward unit normal on either or As.
(Note that is located at z � 0	; this allows an unam-
biguous derivation of the overall energy balance given sub-
sequently. Note too that in the following, we suppress the
subscript on the liquid metal density, �m.) A similar expres-
sion can be written for liquid metal within the mold cavity:

[10]

where Vc � Vc(t) is the liquid metal volume within the mold,
is the crucible exit area (evaluated at z � 0�),

and Ac is the liquid metal’s lower free surface within the mold.
Note that the gravitational work terms in Eqs. [9] and [10]
anticipate use of a one-dimensional (1-D) flow approximation

A�
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2
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on the upper and lower free surfaces. Adding Eqs. [9] and
[10], we obtain the overall instantaneous mechanical energy
balance on the metal drop:

[11]

where Vd is the (constant) total liquid metal drop volume,
Ad is the drop’s total free surface area, and P	 and P� are the
pressures at z � 0	 and z � 0�, respectively.

We define the following area-averaged properties

where Q � is the volumetric flow rate through

area A, and defining a loss coefficient,[17] K, as

[12]

we can express [11] as

[13]

where the Liebnitz rule and divergence theorem have been
used, and where U2 � u � u and at the crucible
exit.

In order to evaluate the volume integral in Eq. [13], we
assume that the velocity distribution at any axial position z
within the crucible and cavity is 1-D and is directed in the
axial direction. As discussed previously, flow within the cru-
cible is largely inviscid. Since it is expected that the velocity
field within the crucible approaches three-dimensional poten-
tial flow into a mass sink (located at the crucible’s apparent
vertex), an estimate of the error associated with the 1-D flow
assumption can be obtained by calculating the ratio, 
, of
the kinetic energy flux due to potential sink flow against
that due to 1-D parallel flow:

[14]

where u� and uz are the radial and axial velocity components
for sink flow and where the integration is carried out over
the crucible’s cross-sectional area at any position z. The cal-
culation shows that 
 � 1.19. Thus, due to the relative steep-
ness of the crucible’s conical wall, the 1-D flow assumption
is reasonable. Within the mold cavity, a short period of lateral
spreading occurs when the metal first enters the cavity and
spreads to meet the mold’s vertical walls. After this, cavity
flow is predominantly 1-D in the axial direction. Based on
the flat free surface assumption described previously, the
uniform flow approximation also appears to be reasonable
within the mold cavity.
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The volume integral in Eq. [13] thus becomes

[15]

where the first integral is taken over the volume of liquid
metal within the mold cavity, Vc, while the second is over
the liquid metal volume within the crucible (Vs). The argu-
ment in the first integral follows by application of continu-
ity between the metal drop’s upper free surface and any axial
position z occupied by liquid metal within the cavity:

, where is the cavity’s cross-sectional
area, and �R2s is the upper free surface’s cross-sectional
area (evaluated at z � zs). Note that Rs � Rs(zs) � mzs 	
Ro, where m (�0.5) is the conical crucible’s slope and Ro

is the radius at the crucible exit. The second integral fol-
lows in a similar manner. (For clarity, we have dropped
overbars on the average positions, zs and zc, of the upper
and lower free surfaces.) Carrying out the integrations in
Eq. [15] and rearranging then leads to the equation govern-
ing drop motion:

[16]

where .

A. Mold Gas Pressure

We assume that the process gas is argon and that it behaves
as an ideal gas. The rate of gas loss from the mold cavity
is given by

[17]

where R is the gas constant for argon, Tg is the constant
gas temperature, and P � P(t) and V � V(t) are the time-
dependent gas pressure and volume within the cavity, respec-
tively. Since gas loss occurs due to flow through the cavity’s
porous bottom wall, we can also express the rate of mass
loss as

[18]

Neglecting small spatial pressure variations due to gas flow
within both the cavity and lower chamber and assuming that
the bottom wall is of constant thickness, td, then

[19]

where again Pl is the lower chamber pressure. Note, since
pressures on both sides of the bottom wall are spatially
uniform, the pressure field within the wall depends only on
the axial coordinate z and is governed by d2P/dz2 � 0. Inte-
grating this expression shows that the preceding derivative

§P � n �
P � Pl

td

m
#
g � �

Ac
   rgvg � n dA � �Ac

�rg 
kg

mg
§P � n dA

m
#

g �
1

RTg
 
d

dt
(PV )

As � pRs
2

	
rz# sz̈sAs

2

mp
 CRo

�1 � Rs
�1 D

�
Vd 

r 
1

2
 
�

�t
U2 dV � �

rz# s Aszc

Ac
 Cz# sAs 	 2pRsmzs

2 D 

Lc
2 � Acz

#
cLc

2 � z
#
spRs

2

	
r

2 �
Vs

 
d

dt
 [z

#
s(mzs 	 Ro)

2
p]2dz

�
Vd

 
r

2
 
�U2

�t
 dV �

r

2Ac
2 �

Vc

 
d

dt
 [z

#
s(mzs 	 Ro)

2
p]2dz  

is exact. Now, since P is spatially uniform within the cavity,
the integral in Eq. [18] can be evaluated as

[20]

where the ideal gas law has been used to express �g in terms
of P and Tg. Setting Eqs. [17] and [18] equal to one another
and substituting Eq. [20] for [18] yields

[21]

where and .

The time rate of change of gas volume within the cavity
is related to the instantaneous speed of the molten drop’s
lower boundary, , as follows:

[22]

where V(t) � (Hc 	 zc)Ac, and Hc is the cavity’s height.
(Note that zc � 0.) This proves convenient when expressing
zc in terms of the drop’s upper free surface position, zs, using

[23]

where again Vd is the drop’s fixed volume. Thus, substitut-
ing Eq. [22] into [21], we obtain the equation describing
pressure evolution within the mold cavity:

[24]

where zc is related to zs through Eq. [23].
Notice from Eq. [24] that mold pressure evolution is deter-

mined by two competing processes: pressure decay due to
gas leakage from the bottom of the mold (represented by
the first term on the right) and compression due to the pis-
tonlike motion of the liquid metal into the cavity (repre-
sented by the second term). Thus, if the magnitude of liquid
metal’s downward (negative) velocity is large enough to
overcome decay due to leakage, trapped gas can be com-
pressed, leading to increasing pressure, P.

B. Nondimensional equations

Equations [13] and [24] represent two coupled equations
governing drop motion during mold filling and cavity pres-
sure evolution. In order to obtain a fuller qualitative under-
standing of the process as well as to facilitate the numerical
solution, Eqs. [24] and [13] are nondimensionalized as fol-
lows: (1) all lengths are scaled using the cavity width Lc

(which is on the order of both the cavity height Hc and the
crucible length Ls); (2) pressures are scaled using the pres-
sure difference �P between the upper and lower chambers,
�P � Pu � Pl; (3) the time scale, �o, is chosen as the char-
acteristic mold fill time, �o � Vm/Qo, where is
the cavity volume and Qo is the metal’s characteristic volu-
metric flow rate into the cavity. In order to estimate Qo, we
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recognize that this quantity is determined by the gas’s char-
acteristic rate of flow through the mold, 
Thus, �o is given by

[25]

The resulting nondimensional forms of Eqs. [24] and [11]
are given by

[26]

and

[27]

where
, and .

Three dimensionless parameters, the Euler number, Eu,
the Froude number, Fr, and the loss coefficient K, appear
in Eq. [27] and are defined as follows:

[28]

[29]

where the definition of �o has been used. The Euler num-
ber indicates the relative importance of pressure forces to
inertia, while the Froude number indicates the relative impor-
tance of inertia to gravity forces. In interpreting the results
presented in the next section, it proves useful to recognize
the physical meaning of the last three terms in Eq. [27]. The
term Fr�1(z

&
s � z

&
c) determines the drop’s downward accel-

eration (embodied in ) due to gravity. From the definition
of Fr in Eq. [29], it is seen that drop inertia is determined
by the pressure difference, �P, mold permeability and thick-
ness, gas viscosity, and since Hc � Lc, mold depth. If gravity
is significantly larger than inertia, Fr �� 1, and as shown
in Section V, downward acceleration can be rapid enough
for compression to overtake leakage-induced decay, causing
cavity pressure to increase. The term Eu(Pu � P) determines
drop acceleration due to the pressure difference across the
drop’s upper and lower free surfaces. Under most circum-
stances, when compression lags, pressure decay, Pu � P, is
positive and the drop is accelerated downward. However,
when acceleration is rapid enough for compression to dom-
inate decay, Pu � P is negative and the pressure force acts
upward, retarding downward acceleration. Finally, the term
K(Rs/Ro)

4 always acts to retard the drop’s downward accel-
eration, with a magnitude that depends on K.
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IV. RESULTS AND DISCUSSION

In this section, we examine the effects of the Euler and
Froude numbers and the loss coefficient and mold cross-
sectional area on mold filling dynamics and mold pressure
evolution. The dimensionless Eqs. [26] and [27] are solved
using fourth-order Runge–Kutta integration. Initial conditions
are defined as follows. The metal drop is assumed to fill the
crucible, so that z

&
u(0) � 2.5. In addition, it is assumed that

the drop’s upper surface is initially stationary, or � (0) � 0.
Assuming that the drop falls a distance ho (�0.1 m) into 
the crucible after melting from the ingot, the approximate ini-
tial speed of liquid through the crucible exit is �2gho

(�1.4 ms�1, neglecting the retarding effects of surface ten-
sion and gas compression within the mold). Thus, by continu-
ity, � (0) � 10�2, indicating the validity of the stationary
initial condition. Finally, the initial cavity pressure is set
equal to the upper chamber pressure: P

&
(0) � P

&
u � 1.111.

Reference values for the Euler and Froude numbers are
determined using the nominal parameter values in Table I,
giving Eu � 1590 and Fr � 0.254. A reference value for the
loss coefficient can be estimated by balancing mass, linear
momentum, and mechanical energy between the crucible’s
exit plane (z � 0) and an arbitrary downstream location
within the mold.[17] The result is given by

[30]

Since the ratio of crucible exit area to mold cross-sectional
area Ao/Ac � 0.196, the reference value for K was taken as
K � 0.646. Finally, a reference value of the mold’s cross-
sectional area was chosen as Ac � 10�4 m2.

Mold filling dynamics will be characterized by the dimen-
sional time required to fill the mold, tf (which we will refer
to as the mold fill time), while mold pressure evolution will
be characterized by the final dimensionless mold pressure,
P
&

f, i.e., the dimensionless pressure extant at the instant when
liquid metal completely fills the mold. Process behavior
will be investigated over the following ranges of Fr, Eu, K,
and A

&
c: 10�2 � Fr � 10�2, 1 � Eu � 103, 1 � K � 104,

and 1 � Ãc � 7.
The effect of varying Euler and Froude numbers on final

mold pressure and casting time are shown in Figures 3 and 4,
respectively. At low Froude numbers , Pf is
actually higher than the initial mold pressure of 1.11. As men-
tioned, from the energy and pressure evolution, Eqs. [27] and
[26], when Fr�1 is large, downward drop acceleration, represen-
ted by z̈

&
s, becomes large enough for compression to overtake

pressure decay due to leakage; in this case, pressure increases.
Similarly, at fixed Fr less than , final mold pressure
increases with decreasing Eu. In this case, since Pu � P is
negative, the pressure force acts upward and resistance to
downward motion becomes smaller with decreasing Eu; com-
pression and associated final mold pressure thus increase.
When Fr is greater than approximately , the gravita-
tional acceleration term becomes comparable to (and, at
larger Fr, smaller than) the pressure-driven acceleration term.
Since all terms on the right side of Eq. [26] are initially
small, initial downward acceleration is likewise small, and
inspection of the time-dependent mold pressure shows that
compression does not overcome decay due to gas leakage.
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Fig. 4—Effect of Froude and Euler numbers on dimensional mold fill time.
K � 0.646, Ac � 10�4 m2.

In contrast to conditions extant under small Froude numbers
, the pressure force thus acts downward, with

a magnitude that increases with increasing Euler number.
Thus, at fixed Fr and increasing Eu, pressure decay is increas-
ingly offset by compression, so that final pressure increases
with increasing Eu.

Trends in mold fill time, shown in Figure 4, are consis-
tent with trends in pressure evolution discussed previously.
Specifically, under conditions where compression dominates
leakage-induced decay, , the upward acting
pressure force slows the drop’s downward motion, leading to
increased fill time. Thus, conditions causing cavity pressure
to rise above the upper chamber pressure also lengthen fill
times (compare Figures 3 and 4). In contrast, when final
pressure is less than Pu, inspection of the associated time
varying mold pressure (not shown) shows that the pressure
force is downward. Since the downward force is propor-
tional to Eu, downward acceleration increases with increas-
ing Eu, leading to increasing compression and decreasing
mold fill time. Note too that predicted fill times are consis-

(Fr � �10�1/2)

(Fr � �10�1/2)

tent with those observed by Watanabe et al. in an earlier
study of plate mold casting.[18]

Considering the effect of mold cross-sectional area on
mold filling, Figure 5 shows that final mold pressure is less
than Pu at all Euler numbers and areas considered. Since P
is less Pu, then, as before, and for any given area, the pres-
sure force acts downward with a magnitude that increases
with increasing Eu. Thus, compression increasingly offsets
pressure decay, resulting in higher final pressures. (Although
not shown, compression dominates decay when Eu � 104,
leading to final pressures higher than Pu.) At any given Eu,
we observe the intuitively reasonable result that final pres-
sure decreases with increasing cross-sectional area. From
Reference 27, it is seen that since zc � 0, both the denom-
inator and numerator decrease with increasing Ac; how-
ever, comparing magnitudes of the two terms involving Ac,
the term in the numerator is found to be larger. Thus, down-
ward acceleration decreases with increasing A

&
c, implying

less compression relative to decay and lower final pressures.
Physically, this is a continuity effect, since gravity and pres-
sure forces do not vary significantly, i.e., by less than an
order of magnitude; then, as area increases, given vertical
displacements within the crucible produce smaller vertical
displacements within the mold. Mold fill times, shown in
Figure 6, are again consistent with trends in mold pressure
evolution. In particular, since the pressure force is down-
ward under all conditions shown in Figure 5, and since the
force magnitude is again proportional to Eu, then for any
fixed area, downward acceleration increases, and thus fill
time decreases, with increasing Eu. The near-linear increase
in fill time with increasing Ãc (at fixed Eu) reflects mass
conservation. Since forces are relatively fixed, it is found
that following a short initial period, the volumetric flow rate
from the crucible, Q, remains essentially constant and inde-
pendent of Ac. Thus, tf � Q�1Ac.

Considering finally the effect of loss coefficient, K, on
mold filling, we find that trends in final mold pressure and
fill time are qualitatively similar to those observed for vary-
ing cross-sectional areas. Referring to Figure 7, for exam-
ple, we see that as K increases at any given Euler number,
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Fig. 3—Effect of Froude and Euler numbers on final dimensionless mold
pressure. K � 0.646, Ac � 10�4 m2.
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Fig. 6—Effect of dimensionless mold cross-sectional area on dimensional
mold fill time. K � 0.646, Fr � 0.254.
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Fig. 7—Effect of pressure loss coefficient on final dimensionless mold
pressure. Fr � 0.254, Ac � 10�4 m2.
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Fr � 0.254, Ac � 10�4 m2.

the final pressure decreases; see Figure 5 for comparison.
Similarly, at any given K, final pressure increases with
increasing Eu. We can use Eq. [27] and arguments similar
to those previously given to explain these results. Like-
wise, as shown in Figure 8, at fixed Eu, fill time increases
with increasing K, similar to the behavior observed for
increasing cross-sectional area; refer to Figure 6. Physically,
as K increases at any given Euler number, resistance to flow
through the crucible’s exit also increases. Thus, downward
acceleration and gas compression decrease, leading to lower
final mold pressures and longer fill times (Figure 8).

V. CONCLUSIONS

Scaling and physical arguments indicate that minimal
solidification occurs during mold filling, that frictional effects
play a negligible role in drop dynamics, that process gas
within the mold remains essentially isothermal, that evapo-
ration recoil is negligible, and that the drop’s free surfaces

remain relatively flat during filling. Based on these argu-
ments, a simple energy-based model of the two-chamber
pressure casting process is developed. The model is used to
examine the effects of various process parameters on cast-
ing dynamics. The most important results and observations
are as follows.

1. Two competing processes, pressure decay due to gas leak-
age and compression due to drop motion into the mold,
determine mold pressure evolution and consequent mold
fill times.

2. When Fr � �10�1/2, gravitational forces on the drop
are large enough to compress gas within the mold. In this
case, the net pressure force on the drop acts upward so
that as the Euler number increases at any given Fr, the
pressure force also increases, reducing both the drop’s
downward acceleration and consequent gas compres-
sion within the mold. Corresponding mold fill times
increase while final mold pressures decrease.

3. When Fr � �10�1/2, gravitational forces are no longer
large enough for compression to dominate leakage-
induced decay. Here, mold pressure drops and remains
below its initial magnitude, producing a downward acting
pressure force; as the Euler number increases at fixed Fr,
the pressure force also increases, increasing both the
drop’s downward acceleration and gas compression within
the mold. Corresponding mold fill times decrease while
final pressures increase.

4. Under the reference conditions chosen, and over the range
of mold cross-sectional areas examined, 1 � A

&
c � 7, final

mold pressure is in every instance less than the upper cham-
ber pressure. Since the pressure force is always downward
and is proportional to the Euler number, at any given A

&
c,

drop acceleration and associated gas compression both
increase with increasing Eu. Thus, corresponding final
mold pressures increase while mold fill times decrease.
Since the forces acting on the drop are largely fixed, it is
found that the volumetric flow rate from the crucible is
likewise fixed. This leads to an essentially linear relation-
ship between mold fill time and A

&
c.

5. Drop acceleration and associated gas compression
decrease with increasing loss coefficient at the crucible
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exit. Thus, at fixed Euler number, corresponding final
mold pressures decrease while fill times increase.
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LIST OF SYMBOLS

Ac cross-sectional area of mold cavity
Ao cross-sectional area of crucible exit
As drop’s upper free surface area
Asp characteristic area of contact between drop and 

crucible
Au cross-sectional area of crucible
hfg latent heat of vaporization
hsl latent heat of fusion
Hc1, Lc height and width (�depth) of mold cavity
kg gas permeability
K pressure loss coefficient at crucible exit
kl,, ks liquid and solid phase thermal conductivities
Ls crucible height
m slope of crucible lateral wall
rhg gas mass flow rate through bottom of mold
n, n unit normal vector and normal direction
P time-dependent mold pressure
Pc characteristic pressure on the drop’s lower surface
Po ambient upper chamber pressure (�Pu)
Pu, Pl upper and lower chamber pressures
qp characteristic drop surface heat flux; characteristic

plasma torch flux
Q volumetric flow rate
R gas constant for metal evaporate
Ro crucible exit radius
Rs characteristic free surface radius of curvature
Ru crucible top radius
T temperature
td thickness of mold’s bottom wall
tf mold fill time
Tg, To process gas temperature
Tm metal melting temperature
Tb liquid metal boiling temperature
u liquid metal velocity
Uo liquid metal speed at crucible exit; characteristic 

axial velocity of crucible
Us, Uc velocity of metal drop’s upper and lower free 

surfaces
Uu characteristic velocity of drop’s upper free surface
vg gas velocity within lower mold wall
V time-dependent gas volume within mold cavity
Vd metal drop volume
zs, zc axial positions of the drop’s upper and lower free 

surfaces

Greek letters

m metal thermal diffusivity
� characteristic viscous boundary layer thickness
�s characteristic solidification thickness
�P pressure difference between upper and lower 

surfaces
�g process gas viscosity
�m liquid metal viscosity
vm liquid metal kinematic viscosity
�m liquid metal density
� crucible half angle
� liquid metal surface tension
� characteristic shear strain at crucible wall
�fill characteristic observed mold fill time
�o theoretical characteristic mold fill time
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