
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2003; 56:1315–1334 (DOI: 10.1002/nme.614)

A non-iterative �nite element method for inverse
heat conduction problems

Xianwu Ling, Russell G. Keanini∗;† and H. P. Cherukuri

Department of Mechanical Engineering and Engineering Science; The University of North Carolina
at Charlotte; Charlotte; NC 28223; U.S.A.

SUMMARY

A non-iterative, �nite element-based inverse method for estimating surface heat �ux histories on ther-
mally conducting bodies is developed. The technique, which accommodates both linear and non-linear
problems, and which sequentially minimizes the least squares error norm between corresponding sets of
measured and computed temperatures, takes advantage of the linearity between computed temperatures
and the instantaneous surface heat �ux distribution. Explicit minimization of the instantaneous error
norm thus leads to a linear system, i.e. a matrix normal equation, in the current set of nodal surface
�uxes. The technique is �rst validated against a simple analytical quenching model. Simulated low-noise
measurements, generated using the analytical model, lead to heat transfer coe�cient estimates that are
within 1% of actual values. Simulated high-noise measurements lead to h estimates that oscillate about
the low-noise solution. Extensions of the present method, designed to smooth oscillatory solutions, and
based on future time steps or regularization, are brie�y described. The method’s ability to resolve highly
transient, early-time heat transfer is also examined; it is found that time resolution decreases linearly
with distance to the nearest subsurface measurement site. Once validated, the technique is used to in-
vestigate surface heat transfer during experimental quenching of cylinders. Comparison with an earlier
inverse analysis of a similar experiment shows that the present method provides solutions that are fully
consistent with the earlier results. Although the technique is illustrated using a simple one-dimensional
example, the method can be readily extended to multidimensional problems. Copyright ? 2003 John
Wiley & Sons, Ltd.

KEY WORDS: heat conduction; inverse methods; non-iterative methods; heat-transfer coe�cient; �nite
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1. INTRODUCTION

Inverse heat conduction problems (IHCP) seek to determine surface heat �ux or temperature
histories, thermophysical properties, contact conductances, volumetric heat sources, or initial

∗Correspondence to: R. G. Keanini, Department of Mechanical Engineering, The University of North Carolina at
Charlotte, 9201 University City Blvd, Charlotte, NC 28223-0001, U.S.A.

†E-mail: rkeanini@uncc.edu

Contract=grant sponsor: National Science Foundation; contract=grant number: DMI-9820880

Received 24 July 2001
Revised 25 March 2002

Copyright ? 2003 John Wiley & Sons, Ltd. Accepted 22 May 2002



1316 X. LING, R. G. KEANINI AND H. P. CHERUKURI

conditions in or on a conducting body, given interior temperature measurements (see, e.g.,
References [1, 2]). Considering the classical problem of estimating a spatially varying sur-
face heat �ux history, parameterized by the vector q̃(t), the vector is generally determined
by minimizing some error measure, S, between a set of measured temperatures, Ỹ, and a
corresponding set of calculated temperatures, X̃. Typically, S comprises a least squares error
norm

S=(Ỹ − X̃)T(Ỹ − X̃) (1)

where modi�ed forms of this de�nition are used when measurement errors are not equal [1]
or when measurements are approximately continuous in time. Likewise, various regularization
terms can be added to circumvent ill-conditioning [1–3]. The data included in S can include
all measurements, appropriate for whole (time) domain solutions, or small subsets of available
data, appropriate in sequential solution schemes; since X̃ depends on q̃, S has the same implicit
functional dependence.
Two general approaches are used in minimizing S. Iterative methods determine q̃ by itera-

tively minimizing S via a numerical minimization scheme, e.g. the conjugate gradient method
[1, 4], dynamic programming techniques [5], the Levenberg–Marquardt algorithm [1], or the
multidimensional simplex method [6]. Here, q̃ is iteratively altered until some convergence
criterion is satis�ed. Non-iterative methods, by contrast, minimize S by explicitly forming the
system

@S
@q̃
=0 (2)

where the objective is to derive a linear system, called the matrix normal equation, in q̃
[2]. Once derived, the matrix normal equation can be solved directly and non-iteratively for
q̃. Although much recent work has focused on iterative solution techniques, this article will
focus on the less-studied problem of non-iterative, �nite element-based solution methods.
In order to derive a matrix normal equation, a crucial preliminary step must be taken,

viz, an explicit linear relationship between X̃ and q̃, called the standard form temperature
equation, must be derived [2]. Beck et al. [2] have given a number of forms for the standard
temperature equation, obtained in most cases by either Taylor expanding X̃(q̃) about some
trial temperature and �ux vector, X∗ and q∗, respectively, or, in geometrically simple, linear
problems, via Duhamel integrals. However, the methods used (e.g. Duhamel’s method) are
either appropriate only to linear problems, or are limited to one-dimensional heat conduction
problems. With regard to �nite element versions of the standard temperature equation, it
appears that while a special one-dimensional case has been obtained [2], more general forms,
suitable for multidimensional problems and spatially varying �ux distributions, have not been
reported.
Once a standard form temperature equation has been obtained, an immediate bene�t is re-

alized: the sensitivity or Jacobian matrix, X̃=[@X̃T=@q̃]T, which is central to most iterative and
non-iterative solution methods, can be derived in explicit form. This eliminates the need for
separate numerical calculations of X̃, based, for example, on solutions of modi�ed forms of
the direct problem [1] or on explicit and computationally expensive �nite di�erence approxi-
mations of each component, X̃ij [1, 2]. This feature, combined with the non-iterative nature of
these solution techniques, makes these methods potentially attractive in process control and
thermal reconstruction applications requiring fast inverse solutions [7].
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In this paper, a non-iterative, �nite element-based method is developed for solving the
IHCP. Here, the unknown instantaneous surface �ux distribution, parameterized by the vector,
q̃n+1, is determined sequentially (at each instant, t= t n+1), based on a set of instantaneous
temperature measurements, Ỹn+1. The method takes advantage of the fact that the direct FEM
model governing conduction within the conducting body can be stated in a form that is linear
in q̃n+1. Based on this linearity, a general FEM standard form temperature equation can be
derived which is appropriate for non-linear multidimensional problems subject to arbitrary
surface �ux distributions. A corresponding, non-regularized matrix normal equation is then
obtained and used to derive a relatively simple inverse solution algorithm.
Since the method must be capable of accurately estimating highly transient heat transfer

histories during quenching, it is �rst illustrated and validated using a simple one-dimensional
quenching model. While particular attention is given to determining the technique’s ability
to resolve early-time heat transfer, sensitivity to measurement error and solution time-step
size are also brie�y examined. Once validated, the procedure is used to determine surface
heat transfer during experimental quenching of long cylinders; a comparison with an earlier
inverse solution of a similar experimental problem is also presented. Finally, a modi�ed two-
step algorithm, incorporating future data and designed to reduce ill-conditioning in the matrix
normal equation, is developed and tested.

2. INVERSE METHOD FORMULATION

In this section, the inverse problem to be solved is de�ned and then the direct heat conduction
problem governing the computed temperature vector X̃ in (1) is described, and �nally the
inverse solution procedure is formulated.

2.1. Inverse problem de�nition

Consider a continuous two-dimensional region � bounded by the curve �=�1∪�2, where �1 is
the portion of � subject to known temperature and=or heat �ux conditions and where �2 is the
portion of the boundary on which thermal conditions are unknown. [Although the formulation
can be readily extended to three-dimensional problems, for simplicity and consistency with
experiments described below, we only consider the two-dimensional case.] Assume that � is
discretized by a contiguous set of �nite elements and let qn+1 represent the set of instantaneous
nodal (normal) heat �uxes extant on �2:

qn+1=
[
qn+1
1 ; qn+1

2 ; : : : ; qn+1
J

]T
(3)

where qn+1
i is the nodal �ux at the ith node on �2, and where superscripts denote the time

index, and J is the total number of nodes on �2. [Note, i is a local index spanning the J
nodes on �2.] Now, let the unknown instantaneous �ux distribution be parameterized using K
of the J members comprising qn+1, where the K chosen nodal �uxes de�ne a vector q̃n+1:

q̃n+1=
[
q̃n+1
1 ; q̃n+1

2 ; : : : ; q̃n+1
K

]T
(4)

and K6J . When K¡J , the J − K nodal �uxes not included in q̃n+1 are determined by
interpolation on q̃n+1. In order to determine the vector q̃n+1, we assume that instantaneous
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time-varying temperature measurements, Ỹn+1, are available, obtained at I interior nodes on
�:

Ỹn+1=
[
Ỹ n+1
1 ; Ỹ n+1

2 ; : : : Ỹ n+1
I

]T
(5)

where Ỹ n+1
i is the measured temperature at the ith measurement site and where i is again a

local index (over the measurement sites).
Given the above de�nitions, we now state the inverse problem as follows: determine the

instantaneous heat �ux distribution on �2, represented by q̃n+1, given the set of instantaneous
measurements, Ỹn+1.

2.2. Direct heat conduction problem

Solution of the inverse problem requires solution of the direct heat conduction problem on
�. Thus, in the case where no heat sources are present, heat conduction on � is governed by
the non-linear heat conduction equation

∇ · (k∇�)=�c
@�
@t

(6)

subject to the boundary conditions

�=�∞ on �1 (7)

and

k∇� · n=q on �2 (8)

where for simplicity, we assume that only temperatures are speci�ed on �1. The initial con-
dition is

�(X; 0)=�0(X) (9)

where X=[x; y; z]. In general, �, c and k are temperature dependent, while q is time and
space dependent.
The direct problem is solved using the Galerkin �nite element method, where the resulting

system of equations is given by

(M+�t�K)Xn+1=[M −�t(1− �)K]Xn +�t�f n+1 +�t(1− �)fn (10)

and where components of the element capacity and sti�ness matrices are given by

M e
ij=

∫
�e

�cNiNj d� (11)

K e
ij=

∫
�e

kNi; �Nj; � d� (12)

Note that �e is the element volume, Ni is a �nite element interpolation function, and summa-
tion over � (=1; 2, for two-dimensional problems) is implied. It is important to note also that
in non-linear problems (where temperature variations are large enough to induce signi�cant
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thermophysical property variations), quasilinearization [1, 2] is used to evaluate M and K.
Thus, the magnitudes of �; c, and k, at the current time step are evaluated using the temper-
ature solution, Xn, from the previous time step. In all cases, superscripts on M and K are
suppressed for clarity. Components of the element force vector are given by

fei =
∫
�e

Niq d� (13)

where �e is the element boundary and where the time index has again been suppressed.
Here, the implicit one step Euler backward di�erence method is employed. Thus, by setting

�=1 in Equation (10), we obtain

(M+�t0K)Xn+1=MXn +�t0f n+1 (14)

where �t0= t n+1 − tn is the current time step.

2.3. Inverse method

The unknown instantaneous �ux distribution, parameterized by the vector q̃n+1, is determined
by minimizing an instantaneous error norm, Sn+1, with respect to q̃n+1, where Sn+1 is given
by

Sn+1=(Ỹn+1 − X̃n+1)T(Ỹn+1 − X̃n+1) (15)

and where the vector of computed instantaneous measurement site temperatures is expressed
as

X̃n+1=
[
�̃n+1
1 ; �̃n+1

2 ; : : : �̃n+1
I

]T
(16)

In order to calculate X̃n+1, the instantaneous global temperature vector, Xn+1, is computed
using Equation (14):

Xn+1=�n +�t0Uf n+1 (17)

where

U=(M+�t0K)−1 (18)

and

�n=(M+�t0K)−1MXn (19)

It is important to note that the system represented by Equation (14) is a condensed system
in which all primary boundary conditions (on �1) have been introduced and used to reduce
the global system. Alternative algorithms can be developed for non-condensed systems, but
are somewhat more involved.
Minimizing Sn+1 with respect to q̃n+1, we obtain the following system of equations:

X̃T(Ỹn+1 − X̃n+1)=0 (20)
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where X̃ is the I ×K sensitivity coe�cient matrix, having elements given by

X̃ ij=
@�̃n+1

i

@q̃n+1
j

(21)

and where superscripts on X̃ ij are again suppressed.
We now show that the system in (20) can be expressed as an explicit linear system in

q̃n+1, i.e. that a matrix normal equation can be derived. This crucial step will provide the
basis for constructing a non-iterative inverse solution scheme for determining q̃n+1. In order
to show this, we make the key observation that the global force vector f n+1 can be expressed
as a linear function of q̃n+1. Although this feature is generally recognized, it apparently has
not been exploited in developing FEM-based inverse solution methods for the IHCP. Thus,
we express f n+1 as

f n+1=D̃q̃n+1 + c (22)

where elements of D̃, given by

D̃Pj=
@fn+1

P

@q̃n+1
j

(23)

are constants determined by the �nite element discretization, and where the constant vector
c, produced by condensation, is determined by the known temperature distribution on �1. In
(23), upper-case subscripts refer to global node numbers while lower-case subscripts again
refer to the local index over the K members of q̃n+1. Note that the dimensions of D̃ and c
are N ×K and N × 1, respectively, where N is the total number of nodes on �.
Having expressed f n+1 as a linear function of q̃n+1, we can now readily show that the

computed measurement site temperatures, X̃n+1, are likewise linear in q̃n+1. Thus, substituting
(22) into (17), we obtain the standard form temperature equation:

X̃n+1=�̃n +�t0Ũ[D̃q̃n+1 + c] (24)

where elements of Ũ are related to those in U by Ũ iP=UGP, and where the local index i
(spanning the I measurement sites) maps to global node G. Note too that P is a global node
number. Likewise, elements of �̃n are related to those in �n by  ̃ n

i = n
G . Thus, the reduced

matrix Ũ has dimensions I ×N , while �̃n is I × 1. Given (24), we can now determine the
sensitivity coe�cients, X̃ ij, in explicit form. Thus, from (21) and (24) we obtain

X̃=�t0ŨD̃ (25)

or in expanded form,

X̃ij=�t0
N∑

P=1
ŨiPD̃Pj (26)

Having derived explicit relationships for X̃n+1 and X̃, we can now use (24) and (25) in
(20) to prove our initial assertion, viz, (20) represents a linear system in q̃n+1:

X̃TX̃q̃n+1 + X̃T[�̃n + g− Ỹn+1]=0 (27)
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where g=�t0Ũc. Equation (27) is an important result since it represents the general, non-
regularized matrix normal equation for FEM-based inverse solutions to the IHCP. Together
with the explicit expression obtained for X̃, Equation (25), Equation (27) provides a basis
for developing e�cient, relatively simple, non-iterative solution procedures.
In order to obtain a solution for q̃n+1, the coe�cient matrix X̃TX̃, must be non-singular, i.e.

the identi�ability condition [1] X̃TX̃ �= 0, must be satis�ed. In cases where ill-conditioning
must be accommodated, regularization and=or introduction of future data can be used. Sec-
tion 2.4 discusses these points in more detail.
Based on the preceding development, we propose the following inverse solution algorithm.

Given Xn, Ỹn+1, M, K, and c, q̃n+1 is �rst determined using Equation (27). Given q̃n+1, f n+1

is then calculated from Equation (22) and in turn, used in Equation (17) to obtain Xn+1. It is
important to note that the present algorithm presumes that the initial temperature distribution,
X0, is known. While this is a reasonable assumption in problems such as quenching, in cases
where X0 is unknown, a separate inverse solution (likely involving iteration) may be required.
As a closing aside, it is interesting to note that X̃ depends on the positions of three sets of

nodes: the I measurement node points, the J surface nodes on �2, and the K nodes chosen
from the second set. Thus, optimization of the arrangement of the three node sets is possible,
for example, as a way to maximize and=or decorrelate sensitivity coe�cients. Further study
of this question will be discussed in a future publication.

2.4. Modi�ed versions of the basic algorithm—future time steps and regularization

A two-step algorithm which incorporates data from one future time increment has also been
developed and tested. The �rst step is used to compute an approximate solution for the in-
stantaneous temperature �eld, which we will denote as X̃n+11 . This is accomplished by �rst
calculating an initial solution for q̃n+1, denoted as q̃n+1

1 , using the basic inverse algorithm
described in Sections 2.1–2.3. Given q̃n+1

1 , X̃n+11 , is then calculated as described in the penul-
timate paragraph of Section 2.3.
The second step, designed to improve both q̃n+1

1 and X̃n+11 using data at tn+2 (i.e. using
Ỹn+2), is formulated as follows. We �rst set �=0 in Equation (10) to obtain:

MXn+2=(M −�t1K)Xn+11 +�t1f n+1 (28)

where temperature-dependent M and K are again determined using Xn and where �t1=
tn+2 − t n+1. Solving (28) for Xn+2 leads to

Xn+2=�n+1
1 +�t1Vf n+1 (29)

where

V=M−1 (30)
and

�n+1
1 =M−1(M −�t1K)Xn+11 (31)

Following the same steps outlined in (20)–(25) above, we then obtain the following linear
system in q̃n+1:

X̃T1 X̃1q̃
n+1 + X̃T1

[
�̃n+1
1 + g1 − Ỹn+2

]
=0 (32)
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where

X̃1=�t1ṼD̃ (33)

and

g1=�t1Ṽc (34)

Here, as before, elements of the reduced matrix Ṽ and the reduced vector �̃n+1
1 are related to

global V and �n+1
1 through ṼiP=VGP and  ̃ n+1

1i = n+1
1G , and where again local index i maps to

global node G and P is a global node number.
Although (32) could be solved directly for q̃n+1, in order to improve system conditioning

we instead combine (32) with (27) to obtain

(X̃TX̃+ X̃T1 X̃1)q̃
n+1 + X̃T[�̃n + g− Ỹn+1] + X̃T1 [�̃n

1 + g1 − Ỹn+2]=0 (35)

Once q̃n+1 is thus computed, f n+1 is determined using (22) and the �nal solution for Xn+1 is
calculated from (17).
Although this modi�ed algorithm uses data from one future time step [2] as a means of

stabilizing the inverse solution, our tests described below indicate no signi�cant di�erence
between solutions obtained by this approach and those obtained the basic algorithm described
in Sections 2.1–2.3.
As an alternative to the use of future data, inverse solutions can be smoothed using Tikhonov

regularization. The most general expression for S in this case is [2]

S=(Y − X)T(Y − X) + �[W0(H0q)TH0q+W1(H1q)TH1q+W2(H2q)TH2q] (36)

where W0, W1, and W2 are weight factors for zeroth, �rst and second order regularization,
respectively, � is a regularization parameter, and H0, H1, and H2 are problem-speci�c matrices
determined by the number of parameters de�ning q (see Reference [2]). Noting that in the
present sequential algorithm, q= q̃n+1, Y=Ỹn+1, X= X̃n+1, and S=Sn+1, then it is clear that
the system @S=@q̃n+1=0 obtained from Equation (36) is again linear in q̃n+1.

3. NUMERICAL TESTS

3.1. Generation of simulated data for validating the inverse method

In order to validate the inverse method, we �rst generate temperature data using a simpli�ed
analytical model of quenching. In particular, we assume that an in�nite cylinder of radius
R (=0:0065 m) at a uniform initial temperature �0 (=850◦C) is rapidly immersed in a
stagnant �uid at �∞ (=40◦C). The heat transfer coe�cient h is chosen as 1000 Wm−2 K−1

and constant thermophysical properties, representative of high temperature nickel-based alloys,
are used (k=20:6 W m−1 K−1, �=8050 kg m−3, c=565 J kg−1 K−1). The solution, stated in
terms of dimensionless variables, is given by [8]:

��(�r; �t)=2Bi

∞∑
m=1
e− ��

2
m �t

J0( ��m �r)

(B2i + ��2m) J0( ��m)
(37)
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where

Bi =
hR
k

(38)

�r =
r
R

(39)

�t =
�t
R2

(40)

��=
�− �∞
�0 − �∞

(41)

and where ��m are the eigenvalues satisfying

BiJ0( ��m)= ��mJ1( ��m) m=1; 2; : : : (42)

Here J0 and J1 are zeroth order and �rst order Bessel functions of the �rst kind, respectively.
Using the above exact solution, noise-free data are generated at 500 equally spaced times

at each measurement site, where site locations are described in the next subsection. The time
interval, �tE , between generation of each simulated measurement is chosen as �tE=0:40 �D,
where �D, given by

�D=
�R2

�
(43)

is the characteristic di�usive time scale between the surface and the nearest subsurface mea-
surement site (located at a depth �R=5× 10−4 m; see Section 3.2). This choice allows for
well-resolved inverse solutions in time.

3.2. Finite element discretization

In order to illustrate and test the inverse procedure developed above and in order to pro-
vide a model for analysing multi-mode heat transfer during quenching experiments described
below, we discretize the cylinder described in the last subsection using a row of axisymmet-
ric isoparametric elements. The elements span the cylinder’s radius and are assigned a �xed
height H and �xed radial length �R(=R=13); see Figure 1. The model assumes that radial
conduction dominates axial, which is valid for long, thin cylinders having negligible axial
variations in surface heat transfer. In cases where surface heat transfer varies signi�cantly
in the axial direction, the �nite element mesh would span the length of the cylinder. For
purposes of illustration and consistency with experiments described below, we use the simple
mesh shown in Figure 1.
In validation tests described in the next three subsections, pairs of simulated measurement

sites are located at nodes 1 and 2, 7 and 8, 15 and 16, 23 and 24, and=or 25 and 26,
as shown in Figure 1. All tests are run using at least one pair of measurement sites, with
various combinations tested, including all �ve pairs. The objective in all cases will be to solve
for the time-dependent �uxes, qn+1

27 and qn+1
28 , given measured temperatures, Ỹ

n+1. Details
illustrating application of the inverse formulation to this problem and to the experimental
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1
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23

24

25

26

Infinite Cylinder Generating Plane

Finite Element Mesh

7

28

2715

H

R

q27
2

q28
2

Figure 1. Finite element mesh for the long solid cylinder problem considered in Section 3.

problem described in Section 4 are given in Appendix A. Finally, note that in all cases, heat
transfer coe�cients at the surface are computed at each time step using

hn+1
P =

−qn+1
P

�n+1
P − �∞

(44)

where �∞ is the ambient temperature and P is an appropriate global node number.

3.3. Early-time resolution and solution sensitivity as a function of measurement
site location

Solutions to inverse heat conduction problems, particularly problems involving highly transient
surface heat transfer, must confront two signi�cant physical constraints. First, a di�usional time
lag, �r=�r2=�, characterizing the time required for detectable thermal information to di�use
to a subsurface measurement site at depth �r, must be accommodated. Initial and subsequent
surface thermal variations occuring on time scales signi�cantly shorter than �r cannot be
reconstructed. Second, due to di�usional smearing, transient temperature responses at internal
measurement sites diminish signi�cantly compared to thermal variations at the surface. This
e�ect impacts the sensitivity of interior (measured and computed) temperatures to (actual and
simulated) surface heat transfer.
In order to examine resolution of early-time surface heat transfer as a function of measure-

ment location, we obtained a series of inverse solutions using single pairs of measurement
sites located at varying depths below the cylinder surface. Consistent with experimental con-
ditions described below, the cylinder is assumed to be composed of Inconel 600 and is again
given a radius of 6:5 mm. As shown in Figure 2, predicted heat transfer coe�cients exhibit
large oscillations during the earliest part of the solution. [Note, since temperature decays
monotonically in time, the plots in Figures 2, 3, 5, 6, and 8 also indicate the heat transfer
coe�cient’s evolution in time, where highest temperatures occur �rst. Note too that estimated
h′s plotted in all �gures are instantaneous averages from nodes 27 and 28 in Figure 1; in
all cases, these are essentially equal.] However, at some instant, which we denote as �cri,
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Figure 2. Example of initial oscillation and selection of �cri.
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Figure 3. Predicted heat transfer coe�cients as functions of
temperature for various measurement locations.

and de�ne as the instant when ��h= |hn+1
P −hn

P|=hn
P6�h (=0:05), the oscillations largely cease

and a more or less steady solution sets in. This behaviour is observed at all measurement
sites, with the initial oscillatory period persisting longer as measurement site depth increases.
This latter feature, which re�ects the di�culty of resolving initial surface heat transfer on
time scales shorter than �r , is depicted in Figure 3, where h estimates prior to �cri have been
removed. In order to quantify this behaviour, we plot �cri versus �r in Figure 4 and use a
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Figure 4. The relationship between �cri and �r .

linear least squares �t to �nd that

�cri=0:54
√
�r + 0:24 (45)

where the coe�cient multiplying
√
�r has units of s1=2. Since �r thus varies quadratically with

measurement location, �r, this relationship shows that temporal resolution of initial conditions,
characterized by �cri, decreases linearly with �r. Although the di�culty of resolving early heat
transfer is well recognized, it does not appear that an explicit relationship between achievable
resolution and di�usion time has been reported.
With regard to solution sensitivity, we found that in the present problem, inverse solu-

tions are sensitive only to measurements from sites nearest the surface. For example, inverse
solutions obtained using sites 25 and 26 alone (Figure 1) are essentially identical to those
obtained using all ten sites. Likewise, solutions obtained using, e.g. nodes 15 and 16 alone
are largely identical to those obtained using nodes 1, 2, 7, 8, 15, and 16. As expected, and
as shown by Equation (45), resolution of initial surface conditions decreases with increasing
depth to the nearest subsurface measurement sites.
Finally, note that the approximate 1% discrepancy between estimated and actual h values

re�ects both spatial and temporal discretization error. In the �rst instance, truncation error
between exact and computed surface heat �uxes is on the order of the outer-most element’s
radial length (using linear elements) [9]. Inverse solutions obtained using a graduated mesh
(having the same number of elements, but with highest resolution near the surface) reduces
this di�erence to less than v 0:5%. The genesis and e�ect of temporal error requires more
explanation. Here, it is observed that estimated surface heat �uxes follow a step-wise decay in
time (during cooling), where the length of each step equals the time step size, �t. De�ning
incremental surface heat loss as �Qn+1(�t)=

∫ tn+�tmax
tn q(t;�t) dt, where �tmax is the largest

time step tested and time tn¿�tmax, it is found that due to increasing temporal resolution,
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Figure 5. Sensitivity of estimated heat transfer coe�cient to solution time step.

�Qn+1(�t) increases with decreasing �t; indeed, �Qn+1(�t) approaches the actual incre-
mental loss as �t becomes small (result not shown). As a consequence of conservation of
energy, the inverse procedure compensates for this e�ect by slightly over-predicting the �ux
magnitude at t= tn+�tmax; the degree of over-prediction increases with increasing �t. Thus,
due to both this feature and the fact that corresponding surface temperature estimates decrease
(due to increasing heat loss), h estimates increase with increasing �t. In the present circum-
stance, since the cooling curves (of surface heat �ux versus time) approach the exact cooling
curve as �t→ 0, it is clear that estimated values of h will always be greater the actual h and
that the mismatch will increase with increasing �t. See Section 3.4 for further elaboration of
this point.

3.4. Sensitivity to solution time step

Similar to the physical constraints limiting resolution of early heat transfer, subsequent time
resolution, �tR, in an inverse solution is again essentially determined by the di�usive time
scale, �r . Beck et al. [2] have shown how future temperatures can improve somewhat on
this fundamental limit, obtaining �tR=c�r , where c¡1; however, use of time steps sub-
stantially smaller than �r invariably leads to solution instability. In order to examine solu-
tion accuracy and stability as a function of time step, �t was varied from �tE to 16�tE ,
where �tE (=0:40�D) is again the reciprocal data sample rate. All solutions are based
on simulated measurements from the two outer-most measurement sites in Figure 1; thus,
�r=�D=5:52× 10−2 s.
As shown in Figure 5, stable solutions are obtained over the entire range of time steps

tested. Although each solution is initially oscillatory, in every case the oscillations cease after
the �rst six time steps. Subsequent h estimates settle to nominally constant values. Clearly,
resolution of early-time heat transfer improves with decreasing time step size. As discussed
above, the observed increase in estimated h with increasing �t arises due to the combined
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Figure 6. The sensitivity of the estimated heat transfer coe�cient to measurement noise.

e�ects of energy conservation and reduced temporal resolution. Again, this feature, which
leads to slight overestimates of incremental heat loss and concommitant underestimates of
surface temperature, produces h estimates that increase with increasing �t.

3.5. Sensitivity to measurement errors

In order to assess the e�ect of measurement uncertainty on inverse solution accuracy, noisy
measurements were simulated by adding a random component to computed temperatures

Ỹ n+1
i = Ỹ n+1

Ci
(1 + �n+1i ) (46)

where, Ỹ n+1
i is the (n+ 1)th noisy temperature at measurement location i; �n+1i is the corre-

sponding random error component, and Ỹ n+1
Ci

is again determined by (37). The error �n+1i is
generated using a Gaussian probability distribution, given by Reference [10]

�n+1i =�
(
12∑
l=1

Rl − 6:0
)

(47)

where Rl is a random number uniformly distributed between 0 and 1. Solution accuracy is de-
termined at three levels of error, �=10−6, 10−3 and 5× 10−3, where the �rst � value simulates
‘exact’ temperature data [2], and where the last two values provide measurement uncertainties
on the order of 0.6% and 3%, respectively. As shown in Figure 6, relatively accurate solutions
can be obtained at all levels of error. Indeed, predicted histories corresponding to ‘exact’ tem-
peratures (�=10−6) are essentially indistinguishable from solutions obtained using noise-free
measurements (�=0; results not shown). Although solutions become increasingly oscillatory
as noise increases, they remain Lyapunov stable (i.e. bounded [2]), even when measurement
uncertainty is relatively large. Although not tested, it is expected that regularization would
reduce oscillation amplitudes.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:1315–1334



INVERSE HEAT CONDUCTION PROBLEMS 1329

Figure 7. A schematic of the probe used in experiments. All dimensions in mm.

In closing this section, we mention that in linear problems (in which M and K, and thus
X̃ are constant), error in surface �ux estimates can be readily obtained using propagation of
error. Thus, from Equations (57) and (59) in Appendix A, we obtain

I∑
i=1
(X̃i;1)2	q̃n+1

1 +
I∑

i=1
(X̃i;1 X̃i;2)	q̃n+1

2 =
I∑

i=1
	Ỹ n+1

i X̃i;1 −
I∑

i=1
	 ̃ n

i X̃i;1 (48)

I∑
i=1
(X̃i;1 X̃i;2)	q̃n+1

1 +
I∑

i=1
(X̃i;2)2	q̃n+1

2 =
I∑

i=1
	Ỹ n+1

i X̃i;2 −
I∑

i=1
	 ̃ n

i X̃i;2 (49)

where the uncertainty 	 ̃ n
i depends on, and is determined by, the set of previously determined

�ux uncertainties, 	q̃11; 	q̃
1
2; : : : ; 	q̃

n
1; 	q̃

n
2.

4. APPLICATION TO QUENCHING PROBLEMS

4.1. Experiments

Determining surface heat transfer during quenching represents a substantial inverse heat trans-
fer problem. Initially, at high part temperatures, a vapour blanket can rapidly form around the
part. Depending on the part’s size and thermal properties and the quenchant’s boiling point,
latent heat of vapourization, and ambient pressure, the blanket can persist or quickly collapse.
Once the blanket collapses, heterogeneous, turbulent two-phase (nucleate boiling) heat transfer
sets in, and eventually gives way to single-phase natural convection.
Quenching experiments were performed using a Drayton Quenchalyzer [11]. Here, an In-

conel 600 metal cylinder, having a thermocouple at its geometric centre, as depicted in
Figure 7, is heated in a furnace to a prespeci�ed temperature, �0=850◦C. Once a steady
temperature is achieved, the cylinder is quickly transfered to a stagnant oil bath at �∞=40◦C.
Throughout, transient temperature changes at the centre of the probe are acquired and stored
by a computerized data acquisition system, sampling at a rate of 8 Hz for a period of 60
seconds.

4.2. Results using non-iterative inverse �nite element method

Since the ratio of the probe’s half length to its radius is around 5, it su�ces to model the
probe as a long solid cylinder and to neglect the in�uence of end heat �uxes. Thus, as men-
tioned, the FEM direct model described above can be used here, subject to one modi�cation.
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Figure 8. Estimated heat transfer coe�cients during quenching for two di�erent sampling rates. Also
shown is a comparison with the results of Bodin et al. [12].

The modi�cation is needed since only one temperature measurement is available at each time
step (I=1); since stable inverse solutions cannot be obtained when the number of unknown
parameters (K) exceeds the number of measurement sites, the instantaneous �ux distribution
at global nodes 27 and 28 in Figure 1 is parameterized using only one �ux parameter, q̃n+1

1 .
This change does not violate the essential physics of the problem since relatively uniform heat
transfer is expected along the cylinder’s periphery. Since non-linearity is important in this
problem, quasilinearization is used to account for temperature dependent thermal conductivity
and speci�c heat.
Figure 8 shows typical results when the solution time steps are 3�tE and 5�tE , respec-

tively, where �tE (=0:125s) is again the reciprocal data sample rate. Also shown is a solution
reported by Bodin et al. [12] using a �nite di�erence-based inverse method and an essentially
identical experimental set-up. Consistent with earlier work [4], estimated heat transfer coe�-
cients become oscillatory when the step size equals �tE and are not shown. Likewise, initial
oscillations, again re�ecting under-resolution of early surface heat transfer, and limited to the
�rst 2 or 3 time steps, are removed from the �gure.
It is clear that solutions obtained by the present method are qualitatively and quantita-

tively consistent with those obtained by Bodin et al. [12]. Considering �rst the qualitative
features exhibited in Figure 8, the cylinder is initially enveloped in a vapour blanket over
850◦C&�&560◦C, with corresponding heat transfer coe�cients remaining relatively small.
The blanket then collapses, giving way to heterogeneous surface boiling and a rapid in-
crease in surface heat transfer (beginning at � ≈ 560◦C). Gradual suppression of two-phase
heat transfer, re�ected in the subsequent decay in h, occurs over 400◦C&�&350◦C. Finally,
natural convection sets in over 350◦C&�&200◦C. Quantitatively, the present solution indi-
cates that h reaches a maximum near 440◦C while Bodin’s solution indicates a maximum at
�=490◦C. Inspection of the experimental temperature record in Figure 9, however, suggests
that since temperature drops from 490◦C to 440◦C in less than 2 s, both estimates indicate
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Figure 9. Comparison of computed and experimental temperature histories. The calculated history is
obtained using ABAQUS [13]. The time-varying heat transfer coe�cient is estimated by the non-iterative

inverse �nite element method.

h maxima at approximately the same instant. Note too that the large transient increase in h
occurs over approximately the same temperature interval in both cases (560◦C&�&350◦C)
and that maximum magnitudes are approximately equal. Finally, note that consistent with
the discussion in Section 3.4, estimates of maximum h increase with increasing solution
step-size.
As an alternative means of accessing inverse solution accuracy, we reformulated the FEM

direct model described in Section 3.2 using ABAQUS=Standard 5.8 [13]. Here, estimated h’s
obtained by the inverse �nite element method were used to �rst de�ne time-dependent �ux
boundary conditions; corresponding temperatures at the centre of the probe were then calcu-
lated. As shown in Figure 9, predicted temperature histories follow the actual data fairly well,
with relative errors remaining less than 3% through most of the experiment and increasing to
approximately 5% only near the end of the experiment. The e�ect of solution time-step size,
�t, is also shown in Figure 9. As expected, due to decreasing temporal resolution, relative
errors increase to approximately 9% when �t=5�tE .

5. CONCLUSIONS

A non-iterative �nite element method for estimating surface heat �ux histories has been de-
veloped. Based on the linearity of the unknown �ux vector, qn+1, within the direct FE model,
minimization of the instantaneous least square error norm leads to a linear system in the
parameterized �ux, q̃n+1. The matrix normal equation thus obtained extends application of
non-iterative inverse solution techniques to linear and non-linear, multidimensional FEM-based
problems. Combined with a closed form expression for the sensitivity coe�cient matrix, the
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method may eventually prove useful in control and reconstruction applications requiring fast
inverse solutions.
The method is validated using independent simulated data from an analytical quenching

model; tests using exact data show that estimated heat transfer coe�cients remain within
1% of the actual value over most of the simulated experiment. Noisy measurements lead
to oscillatory, though stable (bounded) inverse solutions. A modi�ed algorithm, designed to
improve system conditioning using data from a future time step, is developed and tested; use
of regularization to circumvent ill-conditioning is also brie�y discussed. Since the technique
must be capable of resolving highly transient surface heat transfer during quenching, particular
attention is given to determining early time resolution; it is found that resolution is proportional
to the square root of the di�usive time scale between the surface and the nearest subsurface
measurement site.
Once validated, the method is used to investigate transient heat transfer during experimental

quenching of a cylindrical rod. Comparison with an earlier �nite di�erence-based inverse
analysis of a similar experiment shows that the present technique provides �ux histories that
are in qualitative and quantitative agreement with the earlier approach. Although the present
technique is illustrated using a simple one-dimensional example, the method can be extended
to multidimensional problems.

APPENDIX A

In order to illustrate some of the details underlying the inverse formulation, we provide
intermediate results associated with the test problem described in Section 3.2. Again, the
objective is to solve for qn+1

27 and qn+1
28 , which are not necessarily equal. Since c=0, only the

outer-most element (shown in Figure A1) contributes to the formation of the force vector.

Element 13

q27
2

q28
2

Figure A1. Local numbering for element 13 in the mesh for the test problem considered in Section 3.2.
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Speci�cally, the only non-zero vector elements are fn+1
27 and fn+1

28 , given by

fn+1
27 =

∫
�2

qN2 dS=RH
(
2q̃n+1

1 + q̃n+1
2

6

)
(A1)

fn+1
28 =

∫
�2

qN3 dS=RH
(
q̃n+1
1 + 2q̃n+1

2

6

)
(A2)

where 2
 has been canceled out of all terms and where q̃n+1
1 =qn+1

27 and q̃n+1
2 =qn+1

28 . Thus,

f n+1=
RH
6

[
0; : : : ; 0; 2q̃n+1

1 + q̃n+1
2 ; q̃n+1

1 + 2q̃n+1
2

]T
(A3)

Given f n+1 D̃ can be determined using (23):

D̃=
RH
6




0 0

0 0

: :
: :
: :
2 1

1 2




(A4)

where the dimensions of D̃ are 28× 2. Similarly, given D̃, X̃ follows from (25)

X̃i;1 =
RH�t0
6

(2Ũi;27 + Ũi;28) (A5)

X̃i;2 =
RH�t0
6

(Ũ i;27 + 2Ũ i;28) (A6)

Thus, using the last two expressions in (24) gives

�̃n+1
i =  ̃ n

i + (X̃ i;1q̃n+1
1 + X̃ i;2q̃n+1

2 ) i=1; 2; : : : ; I ; I=2; 4; : : : ; 10 (A7)

so that minimization of Sn+1 with respect of q̃n+1
1 yields

I∑
i=1
(X̃ i;1)2q̃n+1

1 +
I∑

i=1
(X̃ i;1X̃ i;2)q̃n+1

2 =
I∑

i=1
(Ỹ n+1

i −  ̃ n
i )X̃ i;1 (A8)

Similarly, calculating

@Sn+1

@q̃n+1
2

=0 (A9)
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gives

I∑
i=1
(X̃ i;1 X̃ i;2)q̃n+1

1 +
I∑

i=1
(X̃ i;2)2q̃n+1

2 =
I∑

i=1
(Ỹ n+1

i −  ̃ n
i )X̃ i;2 (A10)

Together, (A8) and (A10) comprise two equations in the two unknown �uxes, q̃n+1
1 (=qn+1

27 )
and q̃n+1

2 (=qn+1
28 ).
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