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Abstract--An inverse method suitable for use with remote temperature measurements, is used to estimate 
time-dependent, axially-varying surface heat flux distributions during rolling. It is found that the diffusive 
time scale between the roll surface and the embedded measurement array determines the data sample rate 
and the sol.ution’s temporal resolution. The inverse method is first validated using simulated data from two 
representative measurement configurations. Following validation, the method is applied to experimental 
measurements from an instrumented work roll; flux distributions in this case are reconstructed over a 
period of approximately 3 h. Finally, a simple technique for regularizing temporally discontinuous flux 

distributions is introduced and demonstrated. 0 1997 Elsevier Science Ltd. 

In high-speed rolling, a workpiece is plastically 
deformed during passage between two counter-rot- 
ating work rolls (see Fig. 1). A number of coupled, 
transient modes of heat transfer typically accompany 
this process, including conductive heat transfer across 
the roll-workpiece contact zone (roll bite), extreme, 
possibly temperature dependent frictional heating 
within the roll bite, forced convective cooling due to 
sprayed and jetted coolants and lubricants along the 
roll surface, and radiant exchange over portions of 
the roll surface at high workpiece temperatures. 

Determining and controlling in-process roll tem- 
peratures constitutes a long-standing materials pro- 
cessing problem. Time dependent thermal strains 
within the roll, for example, can degrade workpiece 
surface quality [l], can introduce spatial non- 
uniformity within the workpiece [2], and can shorten 
roll service life [2., 31. Similarly, suboptimal roll cool- 
ing can unnecessarily increase lubrication and/or cool- 
ing costs [4]. Importantly, development of robust 
thermal process control strategies or accurate thermal 

Fig. 1. Typical rolling process. 

models rests on experimentally-based characterization 
of the time- and space-dependent surface heat flux (or 
temperature) distribution. Such information provides 
control or process models with the critical, theor- 
etically insoluble boundary condition at the roll 
surface. 

One of the two approaches can be taken in obtain- 
ing information on surface heating. In the first 
approach, surface heat fluxes or temperatures are 
measured directly [3-51. This approach has proven 
difficult, however, due to extreme pressures and tem- 
peratures at the roll surface. The second approach, 
which bypasses direct surface measurements, is based 
on an indirect or inverse strategy and estimates surface 
conditions based on measurements within the roll. 

Due to the lower experimental demands associated 
with indirect approaches, this area has attracted sig- 
nificant recent attention. Tseng et al. [ 11, for example, 
developed a one-dimensional finite element procedure 
to predict the time-varying circumferential surface 
heat flux distribution (at a single axial position) during 
water-cooled hot rolling (where the axial direction is 
determined by the roll’s axis of rotation). In an exten- 
sion of this approach, Huang et al. [6] accounted for 
azimuthal conduction in a two-dimensional inverse 
procedure, again predicting time-dependent cir- 
cumferential heat flux distributions at a single axial 
location. Finally, some of these earlier finite element- 
based inverse results were reproduced by Johnson and 
Keanini [7] using an analytical approach. 

The purpose of this paper is to develop an inverse 
method for estimating time-dependent, spatially vary- 
ing surface heat flux distributions based on remote, 
subsurface temperature or heat flux measurements. 
(Remote measurements refer to measurements 
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NOMENCLATURE 

[Cj ; C, global mass matrix ; component in YR regularization parameter 
element mass matrix 6, characteristic depth of embedded 

cP : ep specific heat ; dimensionless function temperature probes 
describing temperature 6, thermal boundary layer 
dependence of cP thickness 

[f] ; f. global force vector ; element force A* ; A dimensional and dimensionless time 
vector component increment between successive 

f(r, 4 initial temperature distribution workpieces 
H function defined in equation (7a) At dimensional time interval for 
h dimensionless time step averaging conduction equation 
k;i thermal conductivity ; temperature Ar, dimensional temperature scale 

dependence of k E, random error in ith temperature 
[Kj ; K,, global stiffness matrix ; component in measurement 

element stiffness matrix % maximum acceptable change in local 
L dimensionless length flux component (between times t, 
N number of measurement sites and t,+ J 
N, number of parameters describing ET root mean square temperature error 

instantaneous flux distribution r function defined in equation (3~) 
4 vector of parameters describing r? Gaussian random number 

instantaneous surface flux distribution 0 dimensionless temperature 
4*> 4 dimensional and dimensionless heat Pi?, density ; dimensionless function 

flux describing temperature 
R*, R dimensional and dimensionless roll dependence of p 

radius rJ dimensionless standard deviation 
r.* , z* ; r, z dimensional and dimensionless r characteristic (dimensional) time 

radial and axial coordinates scale 
S n+l augmented sum of squares function 4 finite element weighting function 

defined in equation (3) R roll rotation rate. 
t*, t dimensional and dimensionless time 
T dimensional temperature 
u Heaviside unit step function Subscripts 
x 
I;ln: 1 

sensitivity coefficient A advective 
measured temperature at locationj, D diffusive 
time t,, , . i inner ; index for global force vector ; 

weight function index 
Greek symbols k index indicating axial position 

thermal diffusivity R time index 
modified first order regularization R roll 
term given by equation (3b) u spatial differentiation index. 

obtained outside the near-surface thermal boundary 
layer and are used to circumvent problems associated 
with sensor and roll surface degradation). While it 
is shown that remote measurements limit temporal 
resolution, reduce problem sensitivity, and constrain 
data sampling rates, it is nevertheless found that accu- 
rate inverse solution strategies can be developed. 

A two-dimensional finite element-based procedure 
for estimating time dependent, axially-varying surface 
heat flux distributions is described. In order to allow 
temperature measurements external to near-surface 
thermal boundary layers, we base the formulation on 
a diffusive time-scale, zn = Sg CI,, where CI, is the roll’s 
characteristic thermal diffusivity and 6, is the charac- 
teristic depth of probes embedded within the roll. On 

this scale, due to high roll rotation rates, angular 
variations in the surface flux distribution and roll tem- 
perature field can be neglected. This approach con- 
trasts significantly with earlier investigations [I, 61 
which, due to the availability of surface and near- 
surface measurements, focused on relatively short 
advective time-scale heat transfer (tA = a-‘). The 
inverse procedure is validated using simulated data, 
based on two representative measurement con- 
figurations. The first configuration, which replicates 
the remote sensor arrangement in an experimental 
work roll, allows us to determine proper data sam- 
pling rates and parameterization schemes for ana- 
lyzing experimental data. The second (near-surface) 
configuration is used to examine the inverse code’s 
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capabilities under highly dynamic surface heating con- 
ditions. Once validated, the method is used to deter- 
mine flux distributions on the experimental work roll. 

DIRECT HEAT TRANSFER MODEL 

The experimental work roll is fitted with an array 
of 24-embedded thermocouples, as shown sche- 
matically in Fig. 2(a). From this figure it is seen that 
the thermocouples nearest the roll surface are located 
at a finite depth below the surface. Denoting this dis- 
tance as a,, it is clear that a time interval rn = (B$YJ’/~ 
must elapse before thermal information diffuses from 
the surface to the ‘outer-most measurement sites. Since 
surface flux variations over time scales shorter than 
rn are lost to diffusion, in determines the inverse solu- 
tion’s approximate temporal resolution. Similarly, 
since estimation of azimuthal surface flux variations 
requires measurement resolution on the order of 
r* = a-‘, where rD/rA >> 1 in the present experimental 
system, it is clearly impossible to resolve cir- 
cumferential flux distributions within this system. 
(Note that the inverse problems treated by Tseng et 
al. [l] and Huang et al. [6] were based on surface 
and near-surface temperature measurements and thus 
were not subject to diffusive time lag). 

Considering the direct heat transfer problem, since 

the maximum temporal resolution is r,,, then rn 
defines the relevant heat transfer time scale. In 
addition, since azimuthal flux variations are smeared 
by diffusion on this scale, azimuthal variations are 
neglected [7]. The equation governing the direct prob- 
lem is obtained by performing a local energy balance 
over a time increment At which is short relative to in, 
but long relative to r,.+. The requirement At << zn is 
imposed to allow temperature measurements over 
time intervals shorter than T,, while At >> z,+ allows 
smoothing of azimuthal property variations. (Note, 
under the conditions considered here, zr, N 181 s and 
TA - 1 s). The resulting dimensionless equation has 
the familiar form 

pe,e,, = v * (fwq (1) 

where f? = (T- T,)/(q,,/k), V = t?~a/&+~~aj&, r = 
r*/L$,, z = z*/S,, and t = t*/(6i/uo), and where q. is 
the characteristic workpiece-to-roll heat flux. Tem- 
perature dependent thermal properties are expressed 
as k(B) = k,f(f?), p(B) = pop(e), and c,(0) = c,&(e). 
As has been recently shown [7], equation (1) can also 
be derived using a multiple time scale asymptotic 
approach. 

The boundary conditions are chosen to reflect con- 
ditions expected in the experimental work roll [refer to 

z = LR 
1 

a Configuration I 

r 

b Configuration II 
Fig. 2. Temperature measurement configurations: (a) experimental system and Case I configuration; 
(b) Case II configuration. The 24 measurement sites are numbered from left to right, top to bottom, as 
shown. The 12 flux parameters in Case II are likewise numbered left to right and are located at the 
inward pointing arrow-heads. The roll midline and end face are located at z = 0 and z = L,, respectively. 

Dimensionless distances are listed in the text. 
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Fig. Z(a)]. It is assumed that heat transfer is symmetric Here, h is the dimensionless time step, y is a constant 
about the roll midline. Thus, we confine calculations between 0 and 1 (y = l/2 here), and V, is the element 
to half the roll and impose a symmetry condition at volume. Suppressing the time index, force vector 
the midplane elements are given by 

;=o z=o. 

Consistent with experimentally observed temperature 
profiles, we also assume that axial temperature gradi- 
ents disappear as the ends of the roll are approached. 
Thus, 

(lb) 

where LR is the dimensionless roll half-width. A small 
hole is drilled down the roll’s axis of rotation [see 
Fig. 2(a)]. Again, based on experimental temperature 
profiles, we assume that the radial temperature gradi- 
ent is zero at all points along the hole surface : 

as 
-_=O r=Ri 
ar 

where Rf the dimensionless hole radius. Along the 
role’s outer surface, the boundary condition is expre- 
ssed in terms of the unknown flux distribution q : 

ii; = q(R, z, t) (14 

where q = q*/qO. As described below, a time- and 
space-dependent parameterization is chosen to 
describe q, where the parameters are determined in 
sequential fashion by the inverse code. Finally, the 
initial condition is given by 

e(r, z, t = 0) = ,f(r, z) (W 

wheref(r, z) is zero in validation tests and is set equal 
to an experimentally determined nondimensional 
initial temperature in tests involving experimental 
temperature data. 

INVERSE METHOD 

Direct solution 
The direct problem is solved using the Galerkin 

finite element method and implicit time stepping. The 
resulting system of equations is given by : 

WI + ~Yvwn+ I 

=([Cl-Ml--Y)W)&+~Yfn+,+W-Y)fn (2) 

where subscripts denote the time index and where 
elements of the mass and stiffness matrices are given 
by 

Kij = 
I 

&c.&x d V. (2b) 
“C 

where q = faejan is again the dimensionless, time 
dependent heat flux and S, is the element surface. 
Under the experimental conditions considered here, 
roll temperatures vary by a maximum of approxi- 
mately 44°C. In cases where temperature, and thus 
property variations are significant, iterative under- 
refluxation is performed at each time step. 

Regularization 
In some of the examples discussed below, inverse 

solutions are stabilized using first order regularization 
in time [8, 91. At each time step during the inverse 
procedure, the following augmented sum of squares 
function is thus minimized : 

S n+1 =,~,(Y,,.+~ -ej,n+l)’ +YRP(%+l) (3) 

where 

P = ,t, [9j,n+ I -9i.J* W 

and where N is the number of measurement sites, yR 
is the regularization parameter, N,, is the number of 
parameters describing the instantaneous surface flux 
distribution, n is the time index, and U is the Heaviside 
function. 

As described below, we will use a modified form of 
equation (3a) in one of the runs performed in Case 
II : 

P = ,$, hl,,n+l -qj,nl’[l - u(l;j.n+ I m&q)1 (3b) 

where J!&+ , is given by 

i ‘?I+ = max [ 

l%n+l I l9,rl 
m’m 1 . (3c) 

As discussed below, this modification is designed to 
eliminate artificial smoothing of temporally dis- 
continuous flux components, typical in rolling. Notice 
that the size of the discontinuities preserved is deter- 
mined by the magnitude of sq (where sq = 0.1 in the 
case mentioned). 

The regularization parameter yR is determined by 
finding the value that yields [9, lo] 

(4) 

where Ti is the instantaneous calculated temperature 
at measurement location i and ui is the corresponding 
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standard deviation. In all cases, we assume ci equals 
a constant 0, where 

CAT, = C* x ,,@. (5) 
Here, g* is the dimensional standard deviation, 
AT, = q,/k, is the dimensional temperature scale, and 
J?’ E is the characteristic rms measurement error. The 
last approximation incorporates the standard assump- 
tions that measurement errors are additive, have zero 
mean, are fixed in time and are normally distributed 
[lOI. 

Algorithm 
At any given time, t., the inverse algorithm deter- 

mines N, nodal surface fluxes, qk,n = q(zk, t,), where 
the z,s define z,- 1 approximately equal intervals 
along the roll axis and where linear flux variations are 
assumed between adjacent zks. Letting q,, be the vector 
of nodal fluxes determined at t,,, the following pro- 
cedure is used to determine q,, 1 : 

(i) Starting from an initial guess for qn+ I, iter- 
atively solve the direct problem in equation (2) 
to minimize the augmented least-square error 
s ,,+ 1 = S(q,,+ I) defined in equation (3). 

(ii) Once S,, , b minimized, take the corresponding 
minimizing q as qn+ , and return to step (i). 

Minimization is performed using the conjugate gradi- 
ent technique [ 1 l] ; due to sometimes rapid variations 
in local surface heat fluxes, q,,+, is set equal to zero at 
the start of each minimization. Figure 3 summarizes 
the direct model and inverse approach. 

SENSITIVITY CHARACTERISTICS 

As discussed below, stable and accurate non-reg- 
ularized inverse solutions cannot be obtained when 
temperature measurement sites lie far outside the 
near-surface thermal boundary layer. Insight into the 
difficulties associated with remote temperature sensing 
can be gained by considering the problem defining 
the sensitivity X,,n = a@/%,,, where qk,n = dR, zk, h). 

Based on assumed linearity, Xk,n satisfies the equation 
governing 0 [equation (l)], a zero initial condition, 
and the boundary conditions, (la)-( lc). In addition, 
due to assumed linear variations between adjacent flux 
components comprising qn, the boundary condition 
(Id) assumes the form R x& = g(z, t) where g(z, t) 
is zero, except over the interval t,, < t < t,+ , . Over 
this interval, g(z, t) describes a triangularly shaped 
function that increases linearly from 0 to 1 over (zk_ , , 
zk), and then decreases linearly back to 0 over (zkr 
zk+,). Thus, by consideration of the problem gov- 
erning xk,n, we can make several observations : (i) over 
&I < t G t.+1, sensitivity to the kth instantaneous flux 
parameter diffuses outward (on a diffusive time scale 
tn) from a source centered at zk ; (ii) while the source 
at zk is active (over t, < t < t,, I)r a global sensitivity 
maximum exists at (r, z) = (R, zk) ; this follows since 
lines of constant sensitivity are normal to all bound- 
aries (except in the neighborhood of zk) and since 
sensitivity should not increase as roll corners are 
approached ; (iii) once the source at zk becomes inac- 
tive (over t > t,), a bubble-shaped high sensitivity 

Inverse Algorithm: 
The four qs are 
estimated at each time 
step by minimizing 
the least square error 
between 24 measured 
and calculated 
temperatures. 

r 

Direct Problem: 
Solve time-dependent conduction 
equation withm roll’s upper 
quadrant. 

Assumptions: 
axisymmetry about mldline, 
adiabatic condition at roll+nd. 

Solution Method: 
Implicit FEM 

Z 

INVERSE METHOD AND DIRECT MODEL 
Fig. 3. Schematic description of the direct model and inverse method. 
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region forms and diffuses toward the roll’s axis of 
rotation ; (iv) initially, this region’s lateral extent is on 
the order of zk+ , - zk_, (= I,) while its radial extent is 
on the order of (tn+ 1 - f,J ‘j2. both dimensions increase , 
like (t - t,, i) ‘I2 however, as the bubble moves across , 
the roll. 

Since the dimensional time required for the high 
sensitivity bubble to reach most of the probe array is 
on the order of R*‘/u,, the bubble’s lateral extent 
increases to a dimensional length of I:+ 
(cq,R**/tl,)~~* = I,$+ R*( = lk 6,). In the present exper- 
imental system, the characteristic lateral dimension of 
the high sensitivity region, lk, is on the order of 3R*/6,, 
while the characteristic lateral spacing AZ, between 
measurement sites is on the order of R*/(26,). Thus, 
since the corresponding lateral gradient in X,,n is on 
the order of X&l,, the Taylor expansion relating sen- 
sitivities at laterally adjacent measurement sites, 
X k+l,n - - Xk,H + Xk,“.=Az,, reveals that lateral sensitivity 
changes are small. (A similar argument applies in the 
radial direction). Thus, any change in a given flux 
parameter produces an essentially space-invariant 
temperature response across the measurement region 
(see Case I below) and largely explains why inverse 
solutions are difficult to obtain with a remote sensing 
arrangement. 

CODE VALIDATION AND TESTING 

Since inverse solutions are given to instability, it is 
important to ensure that an experimental system has 
sufficient sensitivity to allow accurate inverse solu- 
tions. In addition, since a remote measurement con- 
figuration is used in the experiment described below, 
we find we must also examine the inverse methods 
temporal resolution. Thus, prior to applying the 
inverse procedure to experimental results, we perform 
tests using simulated data on a measurement con- 
figuration identical to that in the experimental work 
roll. This will be referred to as Case I. In order to test 
the inverse code’s capabilities under highly dynamic 
surface heating conditions, we will also examine a test 
case where simulated measurements are obtained on 
and near the roll surface (Case II). The measurement 
configurations used in Cases I and II are shown in 
Figs. 2a and b, respectively. Note that Configuration 
II (Case II) is chosen to provide maximum sensitivity, 
maximum temporal resolution, and enhanced axial 
resolution. 

Although the inverse code accommodates thermal 
property variations, incorporating full nonlinear 
direct solutions within an inverse calculation proves 
expensive, and for purposes of illustration and testing, 
is unnecessary. Thus, in both test cases, we fix property 
values at pa, k, and cPO. While the same simplification 
is used in analyzing experimental data below, the sim- 
plification is justified in this case since the charac- 
teristic temperature scale is only N 44”. 

In both validation tests, measurement error is simu- 

lated by adding a random error component Ed to the 
calculated temperatures : 

where e is the dimensionless standard deviation and 
r) is a gaussian random number. Solution accuracy is 
determined at three level of error, CT = 10e6, 
Q = 0.0012, and c = 0.006, where the first G value 
simulates ‘exact’ temperature data [9]. Based on equa- 
tion (5) (which shows that G z s/AT,), and based 
on an assumed characteristic temperature scale of 
AT, = 460°C (in Cases I and II ; see below), it is seen 
that the second and third 0s correspond to rms 
measurement errors of 0.55”C (1F) and 2.77”C (SF), 
respectively. 

In case I, it is found that accurate inverse solutions 
require relatively fine radial resolution ; thus, an 
18 x 24 finite element mesh is employed. Case II, in 
contrast, accommodates relatively course radial res- 
olution and incorporates a 6 x 24 element mesh. [Note 
that while the fine mesh reduces radial discretization 
error by approximately 66% (linear elements), the 
direct solution cost (approximately proportional to 
the number of nodes cubed) increases by roughly 20- 
fold. For a given N,, this translates into a 20-fold 
increase in inverse solution cost.] Interestingly, the 
improvement in direct solution accuracy is small ; 
under Case I surface heating conditions, for example, 
nodal temperatures determined on the two meshes 
differ by less than 5% over the time span 
o<t< - 45. [While predicted fluxes for t L- - 45 
are, in both cases, within 1% of the actual flux, relative 
differences on the two meshes are significant. This 
apparently reflects round-off error, which in these cal- 
culations could be as high as NyN,)e,, where N,,( = 475 
in Case I ; = 175 in Case II) is the number of nodes 
and E, ( - 1 O-*) is the machine accuracy [ 111.1 Direct 
solution accuracy was validated using the analytical 
solution to a unit step-up in the boundary heat flux. 

Except as noted, parameter values used in Cases I 
and II and in subsequent analysis of experimental data 
are as follows : N = 24 ; N, = 4 (Case I and exper- 
iment), N, = 12 (Case II); y = l/2; AT, = 460°C 
(Cases I and II), AT, = 44°C (experiment) ; 6, = 0.047 
m (Case I and experiment), 6, = 1.56 (10e2) m (Case 
II) ; zD = 181 s (Case I and experiment), zn = 20 s 
(Case II) ; T, = 22.2”C; k, = 42.3 W m-’ K-’ [12] ; 
cpo = 442.0 J kg-’ K-r [12] ; p. = 7858.0 kg me3 [12] ; 
a, = 1.22 (lo-‘) m2 s-l. (Note that material property 
values are those of steel. The values of rn and 6, used 
in Case II are derived in the next section. In Cases I 
and II, inverse solutions are determined over the inter- 
val 0 < t < 50, while the experimental analysis is 
extended over the duration of the experiment, 
0 < t < 75 (corresponding to a dimensional time of 
2.92 h ; see below). The dimensionless lengths shown 
in Fig. 2(a) are as follows: r, = 1.35, r2 = 2.43, 
r3 = 3.51, r, = 5.67, Ri = 0.270, R = 6.67, and 
LR = 28.1. Similarly, the lengths in Fig. 2(b) are: 
r, = 17.1, Ri = 0.814, R = 20.1, and LR = 84.7. 
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Time steps and reduced data sets in Case I and scaling 
issues in Case ZZ 

In the experimental analysis described below, the 
dimensionless time step h corresponding to the exper- 
imental simple rate At,* leads to unstable inverse solu- 
tions (in spite or regularization). (Note, the sample 
interval At,* is the time required to sample the array 
of 24 embedded thermocouples). Results present&d by 
Beck et al. (see pp. 28-29 in [9]) and our discussion 
of sensitivity characteristics above, however, suggest 
that sensitivity can be maximized and stability pos- 
sibly regained by choosing a sampling interval Ai: 
that is approximately equal to the diffusion time scale 
Q,. Thus, since ‘t,, = 181 s and At: = 20 s, a reduced 
data set D, can be formed by sampling every ninth 
reading from the original data set D. Subsequent tests 
show that temporal resolution can be further reduced 
by sampling every seventh reading in D. Note, early 
tests implementing Beck’s [9] sequential estimation 
method and based on the non-reduced data set D 
proved unsuccessful.) Thus, following formation of 
D,, the dimensionless time step used in analyzing 
experimental data is h = At,*,/z,, = 140/181 = 0.77. 
Similarly, h = 0.‘77 in Case I. 

In Case II, since the most sensitive probes are 
located on the probe surface, we are free to define a 
new length scale 6,. In particular, the chosen scale 
should lead to stable inverse solutions while improv- 
ing on Case I temporal resolution. A competing con- 
cern is that the sample interval At,* (which along with 
6, determines h) should be much longer than the roll 
rotation rate R (in order to ensure azimuthal smearing 
of properties). Thus, for a characteristic Q of 1 s-‘, 
we arbitrarily set At,* equal to the same value used in 
the experiment (Z!O s) and take advantage of the inde- 
terminate length scale to arbitrarily set h equal to 1. 
(Thus, 6P, which equals Jm, has the value 1.56 
(lo-*) m, while z,, = $/a0 = AT,* = 20 s.) 

Case I validation-inverse solutions based on remote 
measurements 

The flux distribution used to generate simulated 
data in this case lshown in Fig. 4(a)] is given by 

q(R, 2, t) = G,(z) * exp( - Pt) (6) 

where G,(z) is a piecewise continuous function rep- 
resenting a range of observed distributions (including 
the estimated experimental distribution) and p (= 0.1) 
is a constant. The exponential term is chosen to 
roughly simulate the flux decay observed during the 
hot soaking experiment described below. (Note, to 
better exercise the code, the decay rate in this case is 
made somewhat larger than the estimated exper- 
imental decay rate.) 

The results, presented in part in Fig. 4, show that 
relatively accurate inverse solutions can be obtained 
at all levels of measurement error. Indeed, predicted 
distributions corresponding to exact measurements 
(0 = 10e6) are essentially identical to the actual dis- 

tribution (result not shown). As expected, solution 
instability amplifies as measurement error increases 
[where the result corresponding to c = 0.006 is shown 
in Fig. 4(b)]. Although the regularization parameter 
yR is set equal to 0.07 at all three levels of error, similar 
results, satisfying equation (4), are obtained for 
yR = 0.5 and 0.05. 

Based on a number of tests using a variety of flux 
distributions, it appears that inaccurate inverse solu- 
tions can be readily diagnosed in this configuration : 
large relative errors between simulated experimental 
temperatures and those determined by the inverse pro- 
cedure are observed at the outermost (i.e. most sen- 
sitive) probe sites. This is a significant (though pre- 
liminary) finding which bears on the experimental 
analysis to follow. 

Case II validation-inverse solutions based on surface 
measurements 

As mentioned, this case is designed to examine the 
algorithm’s capabilities under highly transient heating 
conditions ; in contrast to Case I, the results have little 
diagnostic value in the experimental analysis. In this 
case, we simulate successive rolling of several work- 
pieces, where each workpiece is separated by a fixed 
intervql A. The flux distribution used to generate tem- 
perattie data is shown in Fig. 5(a) and is given by 

where 

q(R, z, t) = G,,(z) - H(t) (7) 

H(t) = 2 [v[t--(n-l)P]-U[t-(&‘-A)]] (7a) 
n=l 

and where G,,(z) is another representative continuous 
function. Here, P-A is the dimensionless time 
required to roll each workpiece. As mentioned, 
measurement Configuration II is employed in this case 
[Fig. 2(b)] and N, is increased from 4 to 12. 

As in Case I, the predicted flux distribution based 
on exact temperature data is found to be virtually 
indistinguishable from the actual distribution (result 
not shown). Relatively accurate inverse solutions also 
follow when measurement errors are moderate 
0 = 0.0012), while accuracy and stability degrade at 
large measurement error (Q = 0.006). Refer to Figs. 
5(b) and 6(a), respectively. Note that regularization 
is not used in obtaining the results shown in Figs. 5(b) 
and 6(a). 

The result corresponding to c = 0.006 [Fig. 6(a)] 
brings us to an important finding. If we attempt to 
control the instability depicted in Fig. 6(a) through 
standard first order regularization, the predicted flux 
distribution exhibits globally amplified instability and 
artificial smoothing during the low flux periods 
between rolling (result not shown). However, if we 
employ first-order regularization augmented with a 
ratio test, as embodied in equations (3b) and (3c), 
these pathological features are eliminated, and we 
obtain the result shown in Fig. 6(b). Thus, the poten- 



282 R. G. KEANINI 

0 

q ’ 
0.8 

0.6 

0.4 

0.2 

0 : 
0 

0 

50. 120 

Fig. 4. Case I heat flux distributions : (a) actual distribution ; (b) estimated distribution, (T = 0.006. Note, 
the graphical length scale is altered from the solution length scale (1 unit = 0.0127 m). Each time increment 

equals 140 s. 

tial utility of incorporating a ratio test under highly 
transient heating conditions becomes apparent. 

INVERSE ANALYSIS OF EXPERIMENTAL 
MEASUREMENTS 

In this section, we analyze a set of measurements 
obtained during hot soaking prior to rolling. Here, a 
set of jets are turned on at time zero and left on for a 
period of approximately 3 h. The instrumented work 
roll rotates at a fixed rate throughout (a - 1 s-l) and 
temperatures are sampled at a rate of 1.2 Hz. We will 
assume that the flux decays linearly to zero between 
z4 and the end of the roll (at z = La) ; due to low 
sensitivity to imposed fluxes over -z, < z < L,, it is 

found that predicted solutions are essentially inde- 
pendent of the assumed variation between z4 and LR. 

Since 20 s (= Ata elapse during every scan through 
the thermocouple array, measured temperatures in the 
original data set D are linearly interpolated to the start 
of each scan. Following this step, the reduced data set 
D, is formed by sampling every mth member of D 
(where m = 7). Due to the time lag between initiation 
of the hot soaking operation and the start of detect- 
able heating at the outermost probe sites, temperature 
readings remain essentially constant during the first 
2.33 min. of the experiment. Thus, this data is not 
used in the inverse procedure. Attempting to include 
this data produces unstable inverse estimates, reflect- 
ing the fact that one cannot estimate surface heating 
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Fig. 5. Case Ii heat fIux distributions : (a) actual distribution ; (b) estimated (non-regularized) distribution, 
d = 0.0012. The graphical length scale is altered from the soIution length scale (1 unit = 0.022 m). Each 

time increment equals 20 s. 
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Fig. 6. Case II heat flux estimates : (a) no regnlarization, o 5 0.006 ; (b) modified regtdarization technique 

given by equations (3b) and (3~) ; 0 = 0.006. The gritphical length scale is altered from the solution length 
scale (1 unit = 0.022 m). Each time increment equals 20 s. 

conditions before thermal information can be axis are shown in Figs. 7 and 8, respectively. Clearly, 

detected. excellent agreement is observed nearest the roll 

Predicted and lneasured temperatures at measure- surface, while fair agreement is observed near the roll 

ment sites nearest the roll surface and nearest the roll axis. Although not shown, the level of agreement 
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Fig. 7. Comparison between predicted (--) and exper- 
imentally measured (0) temperatures at outermost probe 
sites. The upper graph corresponds to measurement site 1, 
the middle graph to site 3, and the lower graph to site 6 [refer 

to Fig. 2(a)]. Each time increment equals 140 s. 

improves as one proceeds from the innermost to the 
outermost row of thermocouples. In addition, axial 
variations in calculated temperatures decrease with 
decreasing radius, resulting in increasingly uneven lev- 
els of agreement along any given radius (Fig. 8). In 
terms of sensitivity characteristics, the first trend 
reflects diffusive decay of peak sensitivity (as we pro- 
gress across the roll radius), while the second trend 
reflects associated diffusive smearing of sensitivity 
gradients. 

The predicted tlux distribution is shown in Fig. 9. 

0.4 

0.3 

2 
$0.2 
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0.1 

0 I 

Dimensionless Time t 

Fig. 8. Comparison between predicted (+) and exper- 
imentally measured (0) temperatures at innermost probe 
sites. The upper graph corresponds to measurement site 19, 
the middle graph to site 21, and the lower graph to site 24 

[refer to Fig. 2(a)]. Each time increment equals 140 s. 

The relatively large initial oscillation likely reflects 
solution instability rather than a real flux variation. 
This appears to be the case since oscillations are not 
observed in the experimental temperature measure- 
ments and since the oscillations can be smoothed 
(somewhat) by using a larger regularization par- 
ameter (not shown). Once the initial transient dies 
out, the predicted flux distribution undergoes a slow, 
essentially space invariant decay to zero (near N 70). 
Note that the predicted distribution is fully consistent 
with the nominally uniform spray pattern used during 

0 

Fig. 9. Estima 
Time 

ked experimental flux distribution. The graphical length scale is altered from the solution 
length scale (1 unit = 0.0127 m). Each time increment equals MO s. 
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