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Abstract-An inverse finite element method is developed for simultaneous solution of multi-dimensional 
solid-liquid phase boundaries and associated three-dimensional solid phase temperature fields. The tech- 
nique, applicable to quasisteady phase change problems, fixes element nodes at known temperature 
locations and uses a coarse, spatially limited mesh. This approach is designed to: (1) reduce direct 
and overall solution costs, (2) eliminate iterative direct solutions associated with temperature dependent 
thermophysical properties, (3) limit calculations to the heat affected zone and (4) eliminate ad hoc assump- 
tions concerning the boundary heat flux distribution. The inverse algorithm couples a nonlinear solid phase 
conduction solver with conjugate gradient minimization. First-order regularization and upwind differencing 
are implemented to improve solution smoothness and stability and an analog welding experiment is used 

to investigate the technique’s capabilities. 

INTRODUCTION 

Robust general purpose inverse solution procedures 
applicable to industrial scale phase change problems 
are nonexistent. Indeed, inverse phase change prob- 
lems in general have received relatively limited atten- 
tion [l-lo]. This is somewhat surprising since the 
ability to predict mnlti-dimensional phase boundaries 
and associated solid temperature fields bears sig- 
nificantly on a number of important applications, 
including calculation of residual thermal stresses and 
strains [ 111, control of tissue destruction in high- and 
low-temperature surgical treatments [12], control of 
freezing and melting in cryopreservation protocols 
[ 131, and control of bead shape during welding [ 141. 
Ultimately, such a capability may facilitate correlation 
of material microstructure with thermal history, may 
enhance process control, and may augment devel- 
opment of large-scale process simulations. 

Progress has been hindered by three significant 
difficulties. First, since the number of grid points 
required for a given degree of spatial resolution can 
increase exponentially with spatial dimension, direct 
solution costs can also increase exponentially. Second, 
the number of parameters introduced in a realistic 
multi-dimensional inverse phase change problem typi- 
cally increases with spatial dimension ; geometric or 
even exponential increases in the number of par- 
ameters can easily occur. Importantly, overall solution 
costs increase with the number of unknown 
parameters. Third, while accurate inverse solutions 
often require incorporation of temperature dependent 

thermal properties, associated computational costs 
can be prohibitive. 

The objective of this study is to develop an inverse 
method which allows relatively efficient inverse solu- 
tions to nonlinear multi-dimensional phase change 
problems. A new inverse method which sim- 
ultaneously determines multi-dimensional phase 
change boundary shapes and associated solid phase 
temperature fields is formulated. In brief, the method 
defines a vector P which describes both the unknown 
phase boundary and the unknown boundary heat flux 
distribution. (As discussed below, the unknown 
boundary heat flux distribution, denoted by PCs) in 
Fig. 1, is determined at nodes labeled with interlocking 
OS and qs in Fig. 2. We will refer to the set Pcq) simply 
as the boundary heatflux distribution.) Beginning with 
an initial guess, P,, the inverse procedure iteratively 
alters P until the total error F between spatially dis- 
crete temperature measurements and corresponding 
calculated temperatures is minimized. Direct solutions 
are obtained using a nonlinear finite element con- 
duction solver, while minimization is effected by the 
conjugate gradient method. Importantly, the direct 
solver uses a coarse, spatially limited mesh in which all 
nodal temperatures are experimentally known. This 
approach is designed to : (1) reduce direct solution 
costs; (2) eliminate iterative direct solutions associ- 
ated with temperature dependent thermophysical 
properties ; (3) limit calculations to the heat affected 
zone (HAZ) adjacent to the melt; and (4) eliminate 
ad hoc assumptions concerning the boundary heat flux 
distribution. 
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NOMENCLATURE 

regularization term 
specific heat 
d3 ; D,, D,, D, dimensionless and 
dimensional distances from the x- 
axis to the first, second and third 
columns of thermocouples 
spacing (in the x-direction) between 
nodes not located on the melt boundary 
average relative error between 
calculated and experimental 
temperatures 
maximum relative error between 
calculated and experimental 
temperatures 
average absolute error between 
calculated and experimental 
boundary locations 
dimensionless thermocouple 
embedding depths with respect to 
the plane z = 0 
characteristic grid spacing 
modified sum of squares error 
thermal conductivity 
solution domain thickness and 
workpiece thickness 
number of parameters in P (Case I : 
M = 10 ; Case II : M = 17 ; Case III : 
M = 31) 
number of temperatures used in 
inverse solution (N = 48) 
number of parameters describing 
fusion boundary shape (Case II : Nb = 7 ; 
Case III : Nb = 21) 

NbU, Nbm, Nbl number of parameters 
describing the fusion boundary shape on 
the planes z = 0, z = h, and z = 2h,, 
respectively (NbU = Nbm = N,,, = 7) 
number of times that average 
temperatures from thermocouple 
array are obtained during an 
experiment (ND = 50) 
number of parameters describing 
boundary heat flux distribution on the 
planes z = 0 and z = 2h, (Nq = 10) 
number of parameters describing 
fusion boundary on the back (or 
“straight”) part of the pool (Case II : 
N,=5;CaseIII:N,=15) 
number of parameters describing the 
fusion boundary shape on any of the 
planes z = 0, z = h, and z = 2h, 
[equation (9)] 

Pe,, Pe, grid Peclet number (Pe, = u,H/a) 
and solid Peclet number (u,R,,/cr) 

P parameter vector 
Pcbu), Pcb”‘) P@“) parameters describing the 

fusion boundary shape on the planes 
z = 0, z = h, and z = 2h, 

p (4) parameters describing the boundary 
heat flux distribution on z = 0 and 
z = 2h, 

qO, Aq dimensionless constants used to define 
initial boundary heat flux 

I(“), ycrn), r(l) dimensionless initial parameter 
values for fusion boundary on the 
planes z = 0, z = h, and z = 2h,, 
respectively 

R0 characteristic radius of heat source 
(R, = 2.0 mm) 

t, time interval between temperature 
measurements 

Ati, sample time interval 
T, f temperature and calculated 

temperature 
T,,,, T, workpiece melting temperature and 

ambient temperature 
up, CT dimensional and dimensionless 

workpiece travel speed (U = 1) 
Y, measured temperature 
x, y, z dimensionless Cartesian coordinates, 

x = X/R,, y = Y/R,, z = Z/R, 
X’ dimensionless coordinate defined in 

Fig. 2 
Ax, dimensionless node spacing in the 

x-direction 
X, Y, Z Cartesian coordinates. 

Greek symbols 
thermal diffusivity 
dimensionless constant used to 
generate initial fusion boundary guess 
convergence tolerance 
dimensionless temperature, 
0 = (T- Tm)/(Tnl- Tco) 
experimental dimensionless 
temperature distribution on the non-melt 
vertical boundary 
regularization parameter 
density 
standard deviation of ith temperature 
measurement. 

Subscripts 
avg average 
b boundary 
bl, bm, bu lower, middle and upper 

boundary, respectively 
D data 
e experimental ; vertical boundary 
m melting ; middle 
max maximum 
0 reference 

upper 
index. 

Superscripts 
bl, bm, bu lower, middle and upper 

boundary, respectively 
q heat flux. 

1 
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Fig. 1. Parameterization scheme and top view of finite element mesh. The heat source coincides with the Z- 
axis and the x-axis coincides with the pool’s centerline. Workpiece motion is in the positive x-direction. 
The solution domain’s upper and lower boundaries lie at nondimensional depths h, and h, + 2h, below the 
workpiece’s upper surface. The domain’s middle layer lies at a depth h,+ h,. Each of these depths are 
determined by thermocouple embedding depths within the workpiece. The nondimensional distances d,, 
d2 and d3 are likewise determined by distances from the pool centerline to the embedded thermocouples, 
Parameterized heat fluxes (PC@) are defined at the five circled nodes on z = 0 and at five similar nodes on 

Z = 2h,. 

Fig. 2. Finite element mesh and locations of interpolated experimental temperatures (IETs) used in 
definition of F [equation (I)]. The N (= 48) IETs used in Fare denoted by OS and interlocking OS and qs. 
Parameterized boundary heat fluxes are defined at the N, (= 10) nodes labeled with interlocking OS and 
qs. IETs labeled by E are used as primary boundary conditions along the outer boundary. Similarly, 
temperatures at nodes on the melt boundary (labeled with H) are set equal to the workpiece melt 

temperature, T,. 
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Due to these features, inverse solutions to realistic 
multi-dimensional phase change problems can be 
readily determined. Using a simple analog welding 
experiment, we examine inverse solutions under three 
sets of conditions : 

Case I 
Inverse solutions for the solid temperature field and 

boundary heat flux distribution are determined in the 
case where the three-dimensional melt boundary is 
known and fixed in the inverse code. (As discussed 
below and as shown in Fig. 2, the melt boundary on 
three planes within the workpiece is described by three 
sets of parameters, Pcb’), Pcbm) and Pcbu). Thus, in Case 
I, all three sets of shape parameters are fixed at their 
experimentally determined values.) 

Case ZZ 
Inverse solutions for the interior fusion boundary 

shape (Pcbm) in Fig. 2), solid temperature field, and 
boundary heat flux distribution are determined when 
the melt shape is known and fixed on the upper and 
lower planes (z = 0 and z = 2h, in Fig. 2). In cir- 
cumstances where the upper and lower planes coincide 
(or nearly coincide) with outer, observable workpiece 
boundaries, this case corresponds to determining 
inner, nonvisible melt boundaries. 

Case III 
Preliminary results concerning inverse solutions for 

the complete three-dimensional (3D) fusion boundary 
and associated solid temperature field are discussed. 
The effect of the initial parameter specification on 
solution accuracy is examined in all three cases. 

INVERSE ALGORITHM 

The program uses conjugate gradient minimization 
to minimize the following modified sum of squares 
function [15] : 

F(P) = : (Y,-f,(P))*+AB(P) 
i= I 

(1) 

where P = (P,, Par.. . PM) is the parameter vector, M 
is the number of parameters determined by the inverse 
solution, Y, are N temperature measurements from 
various points within the solid region, Fl = Fi(P) are 
corresponding calculated temperatures from the direct 
solution, I is the regularization parameter, and B(P) 
is the regularization term. P contains Nb parameters 
describing the unknown phase boundary and N, 
(= 10) parameters describing the unknown boundary 
heat flux distribution. Thus, M = Nb + N,. The par- 
ameterization scheme is shown in Fig. 1. 

First order regularization is implemented using the 
following definitions of B in Cases II and III, respec- 

tively : 

%-’ 
B = c (p{b+“;) _pjbm))z 

I=, 
(2a) 

Nb”_’ N,K’ 
B = 1 (pip] -pi”“))2 + 1 (pjb+r;) _p$bm))Z 

i= 1 I= I 

h,-’ 
+ c (Ply), -Pjb”)* (2b) 

i= 1 

where Pcbu) Pcbm) and Pcb’) are horizontal distances 
from the’x-axis to the fusion boundary (refer to Fig. 
1). The superscripts bu, bm and bl refer to the planes 
Z = 0, Z = L,/2 and Z = L,, respectively, while Nbu, 
Nbm and Nb, are the number of distances defined on 
each plane (Nbu = Nbm = Nbl = 7). 

The inverse program uses N spatially discrete mea- 
sured temperatures as input and seeks to determine 
the unknown boundary shape and domain boundary 
heat flux distribution using the following algorithm : 

(1) The conjugate gradient scheme alters the melt 
shape and boundary heat flux distribution. 

(2) A finite element mesh is generated using the 
new fusion boundary. 

(3) Using updated values of the boundary heat flux, 
a new temperature distribution is calculated on the 
updated mesh. 

(4) The resulting direct solution allows calculation 
of a new value of F [based on equation (l)]. 

(5) If F is minimized, the program stops and a 
solution for the boundary shape, boundary heat flux 
distribution and the solid phase temperature field is 
determined. Otherwise, the program returns to step 1 
and the process repeats. 

In the following subsections, we outline the direct 
heat transfer problem, briefly discuss the finite element 
solution to the direct problem, and then describe 
numerical implementation. 

Direct heat transfer problem 
The direct heat transfer model is based on the fol- 

lowing assumptions : (1) the workpiece moves past a 
stationary heat source at a constant speed up; (2) 
quasi-steady conditions prevail in the heat source- 
fixed coordinate system ; (3) the problem is symmetric 
about the line of travel and (4) phase change occurs 
at a sharp, well defined temperature, T,,,. (In cases 
where phase change occurs over a range of tempera- 
tures, the boundary temperature would be taken as 
the lowest temperature in the range.) 

The problem domain is shown in Figs. 1 and 2. The 
heat source is centered on the Z-axis and the plate 
moves in the positive X-direction. Symmetry is 
assumed about the plane Y = 0. Defining the dimen- 
sionless temperature as 

,m -1 
/j= Cl-lm) 

Vm-Tm) 
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and scaling lengths by the characteristic heat source 
radius R, (= 2.0 mm) 

x = X/R_, y = Y/R0 z = Z/R, (4) 

the non-dimensional conduction equation assumes 
the form : 

uex = &v * [lml] 
s 

(5) 

where Pe, = u,R& is a generalized, temperature 
dependent solid Peclet number, T, is the ambient 
temperature and c( = k,/(pc,) is a generalized tem- 
perature dependent thermal diffusivity. Thermal con- 
ductivity, specific heat and density are temperature 
dependent ; for convenience we express thermal con- 
ductivity as k = k,,& where k, is a constant and 
ff = k(0). The nondimensional velocity, U, equals one 
since the velocity scale is taken as up. 

The temperature on the fusion boundary is the 
solid’s melting temperature 

!!I=1 (6) 

while temperatures on the (non-melt) vertical bound- 
aries equal experimentally measured temperatures : 

8 = 8,. (7) 

In addition, the upper and lower boundaries (z = 0 
and z = 2h, in Figs. 1 and 2) are subject to the normal 
heat flux distribution defined by Pcq) : 

ae - = Kopcq) aZ 
where JQ, = R,/(k( T,, - T,)) . 

Numerical methods 
The problem described in equations (5)-(8) is 

solved using the Galerkin finite element method. Tem- 
peratures at every node are either specified (on the 
melt boundary) or interpolated from temperature 
measurements (see below). Iterative direct solutions 
are thus bypassed since temperature dependent ther- 
mophysical properties are known throughout the 
solution domain. In any given direct solution, primary 
boundary conditions along non-melt vertical bound- 
aries (labeled with “E” in Fig. 2) are interpolated 
from experimenta I temperature measurements 
(described below). Primary boundary conditions are 
also imposed at nodes lying on the fusion boundary 
(labeled with “H” in Fig. 2). On the upper and lower 
surfaces, secondary (heat flux) boundary conditions, 
contained in vector PCs), are imposed at nodes lying 
interior to the outer vertical edges and the fusion 
boundary (labeled with interlocking OS and qs in Fig. 

2). 
To ensure that all boundary shape parameters (i.e. 

distances) are either positive or zero and that the 
boundary does not intersect the thermocouple array, 
the following geometric constraints are imposed in 
Cases II and III : 

Pf”)>O /?=l,...,NSp (CaseII) (9a) 

Pgb”) 20 Pp’ 30 Pp > 0 

/I= l,...,NSp (CaseIII) (9b) 

and 

Pf”),<d, /I= l,...,N, (CaseII) (10a) 

Pjpu) d d, Pjpm) 6 d, P$” < d, 

/I = 1,. . , N, (CaseIII). (lob) 

Here, Q is the dimensionless horizontal distance 
between the x-axis and the first column of thermo- 
couples (parallel to the x-axis), N, is the the number 
of parameterized distances describing the back 
(‘straight’) portion of the pool and NSp (= 7) is the 
number of parameters describing the melt boundary 
on each of the planes z = 0, z = h, and z = 2h, (see 
Fig. 2). Constraints are imposed using nonexpansive 
projection operators on the convex sets defined by the 
constraints in equations (9) and (10) [ 16, 171. 

The program requires an initial guess for P,, . . Pw 
Initial guesses for the fusion boundary shape on the 
planes z = 0, z = h, and z = 2h, are generated as 
follows : 

and 

P$“) = rCm) + Ar< z = h, (Case II) (11) 

$‘“‘=r’“‘+Ar~ z=O 

P$“) = r(“‘) + Arc z = h, 

(lla) 

(1 lb) 

P$‘) = r(l) + Ar[ z = 2h, (Case III) (1 lc) 

where I(“), rem) and r(‘) are constants and < is a random 
number between - 1 and 1. The constant Ar can be 
adjusted to provide reasonably accurate (Ar << 1) or 
poor initial guesses (Ar - O(1)). In Case III it is found 
that inverse solution accuracy can be significantly 
enhanced by randomizing the initial shape speci- 
fication through equations (1 la)-( 1 lc) (see also [ 171). 
Other schemes for generating initial shape guesses 
were investigated ; a heuristic condition on P, is given 
in the Results and Discussion section below. The 
initial guess for the nodal surface heat flux is generated 
using 

Pp’=q,+Aq[ /3= l,...,N, (lld) 

where q0 and Aq are constants and again 5 is a random 
number between - 1 and 1. 

The regularization parameter, a, is determined by 
finding the value that gives 

$ (“-‘J _ N 
i=l I 

where cri is the standard deviation of the ith tem- 
perature measurement [15, 171. Accordingly, I is 
set equal to 0.01 in all cases. In all cases tested, essen- 
tially identical results are obtained using 
-5 x 10e3 < i < -5 x 10p2. In contrast, predicted 
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fusion boundary shapes tend to become undulatory 
for 1. < -5 x 10m3, while non-physical solutions, 
reflecting dominance of the regularization term, result 
for i > - 5 x lo-*. 

The direct problem solution is obtained in the stan- 
dard fashion. Element stiffness matrices and force vec- 
tors are calculated and assembled into their global 
counterparts. Primary boundary conditions are then 
introduced and the corresponding global equations 
condensed out. The condensed system is then solved 
using LU decomposition. Due to the coarseness of the 
mesh, the grid Peclet number, Pe, = Hu,/u, (where H 
is the characteristic grid length and CI, is the thermal 
diffusivity at room temperature), is relatively large 

(Pe, - 5). Thus, upwind differencing [18] is used to 
ensure stability. It should be noted that the scheme in 
[ 181 is subject to crosswind diffusion [ 19,201 and that 
improved upwinding techniques are available [2&22]. 
However, as shown by Hughes and Brooks [19, 201, 
crosswind diffusion degrades accuracy only when 
elements are skew to the direction of travel, when 
boundary conditions are discontinuous, when work- 
piece motion is non-lineal, or when sources are 
present. Since workpiece motion is lineal, since bound- 
ary conditions are continuous, since there are no sour- 
ces, and since elements in the problem are either not 
skew to the direction of travel or are only slightly 
skewed, Hughes’ scheme [18] is expected to be accu- 
rate. This view is strongly supported by the accuracy 
of predicted temperature distributions and predicted 
phase boundary shapes (see below). Twenty-four 
linear brick elements containing 63 nodes are used in 
all calculations. 

The inverse program stops when the following cri- 
terion is satisfied : 

IF i+’ -F’I/F’ < E (12) 

where superscripts denote iteration number and where 
& = 10-a. 

EXPERIMENTAL METHODS 

An analog welding apparatus was constructed in 
order to validate the inverse procedure. Due to 
approximate dynamic similarity between paraffin and 
aluminum melts [23], and due to relative ease of hand- 
ling, we chose paraffin as the workpiece material. As 
shown in Figs. 3 and 4, each paraffin block was fitted 
with nine thermocouples (Type K, 30 gage). Three 
rows (‘rows’ being parallel to the y-axis) of three 
thermocouples each were placed at three different 
depths within the workpiece. The first row, containing 
thermocouples 1-3, was embedded at a depth 2 mm 
below the workpiece’s upper surface while the second 
and third rows (containing thermocouples 4-6 and 7- 
9) were placed 5 mm and 10 mm below this. The first, 
second and third thermocouples in each row were 
located at distances D,, D,, and D, (= d, . R,,d, . 
R,, d3. R,) from the X-axis (Fig. 3). The ther- 

Fig. 3. Isometric view of thermocouple placement. D, = 15 
mm, Dz = 17 mm, D3 = 19 mm and D, = 2.3 mm. Ther- 
mocouples l-3,46 and 7-9 are embedded at depths of 2,7 
and 12 mm, respectively. Workpiece thickness is 14 mm and 

up = 1.24 x 1O-4 m s-‘. 

\ 
linear motion table 

Fig. 4. Experimental set-up. Thermocouples l-3, 4-6 and 
7-9 are embedded at the respective depths H, = 2 mm, 

HU+H,,,=7mmandHU+2H,=12mm. 

mocouples were connected to an analog multiplexer 
and data acquisition was controlled by a PC-based 
data acquisition board (National Instruments, AT- 
MIO-16L-9); refer to Fig. 4. Due to the wax’s low 
thermal diffusivity, workpiece motion was controlled 
by a PC-controlled fractional-step stepping motor, 
which provided speeds in the range 2 x 10e6 m 
s-’ < up f 2 x lo-’ m s-‘. 

At the beginning of each experiment, the heat 
source was rapidly pushed to a fixed depth within the 
wax and plate motion initiated. The heat source, a 
soldering iron, was chosen to provide cross-sectional 
fusion boundary shapes resembling those in full 
penetration welds. During each experiment, average 
temperature readings from all nine thermocouples 
were obtained at ND (= 50) equally spaced time 
intervals, t,. Specifically, at each measurement time, 
t D,. . , ND tD, the nine thermocouples were each sam- 
pled 70 times and the nine resulting averages saved on 
disk. This procedure was possible due to the data 
acquisition board’s relatively high sample rate (10’ 
Hz) and the plate’s low travel speed (u, - 10-l mm 
s-l). Since the plate only moves on the order of 6 pm 
during any given sample interval, At, (- 5.6 x 10e3 
s), each set of stored average temperatures essentially 
reflects the instantaneous temperature distribution. 
Quasisteady conditions (in the heat source fixed coor- 
dinate system) were assumed when the melt assumed 
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a constant width. Accordingly, only quasisteady tem- 
peratures were used in the inverse procedure. 

Two sets of tempe.rature measurements are required 
by the inverse code: the first set corresponds to the 
temperatures Y used to evaluate F in equation (l), 
while the second is used to impose the boundary con- 
dition in equation (7). Both sets are obtained by inter- 
polating the stored temperatures described above. As 
shown in Fig. 2, finite element nodes are placed along 
the lines of travel traced out by the inner and outer 
columns of thermocouples in Fig. 3. Based on the 
sample rate (r;‘), the workpiece travel speed, and the 
initial array position, nodal temperatures on each of 
the planes z = 0, z =: h, and z = 2h, are obtained by 
linearly interpolating between the nearest ‘upstream’ 
and ‘downstream’ temperature measurements. In the 
present case, the distance between adjacent (upstream 
and downstream) measurement locations (in the 
torch-fixed coordinate system) is 2.3 mm (= 04) while 
node spacing in the x-direction (within the measure- 
ment volume) is 6 mm. The accuracy of this approach 
can be enhanced by either locating nodes at measure- 
ment locations or by increasing the sample rate. How- 
ever, for purposes of illustration and due to the flexi- 
bility associated with adjustable node spacing 
(allowing inverse solutions over varying pool lengths), 
the present method is both adequate and attractive. 
The relative accuracy of predicted boundary shapes 
(discussed below) lends further support to this 
approach. Note that the uniqueness condition N 2 M 
[24] is satisfied in all three test cases. 

RESULTS AND DISCUSSION 

Although placement of element nodes at known 
temperature locations effectively linearizes nonlinear 
direct problems, due to relatively small temperature 
changes and for purposes of illustration, constant 
thermophysical properties are used here. The fol- 
lowing property values are assumed throughout [23] : 
p = 814 kg rne3, cp == 2093 J kg-’ K-’ and k = 0.21 
J m-’ s-’ Km’. Experimentally determined melting 
and ambient temperatures are T, = 31.O”C and 
T, = 22.6”C, while the workpiece travel speed is fixed 
at up = 1.24 x 10m4 m s-‘. The dimensional distances 
D,, D2, D, and D4 and the thermocouple embedding 
depths are given in the caption to Fig. 3. The work- 
piece thickness, L,“, is 14 mm and (as mentioned) node 
spacing in the x-diri:ction within the measurement 
volume is 6 mm. Experimental shapes on z = 0, z = h, 
and z = 2h, are directly measured by planing off wax 
to the desired depths at the conclusion of each exper- 
iment. 

Case I. Inverse solution when the melt shape is known 
andjixed in the inverse code 

In the first case, the fusion boundary is fixed to the 
experimentally determined shape and the parameter 
vector only includes the parameters describing the 
unknown boundary heat ilux distribution. Thus, 

M = 10 and the regularization term B is set equal to 
0. This case corresponds to the problem of deter- 
mining solid phase temperature distributions and sur- 
face heat flux distributions given accurate information 
on the fusion boundary shape. Potential, though 
largely untested applications include post-process 
determination of 3D residual thermal stress and strain 
fields, correlation of HAZ microstructure or weld 
mechanical properties with thermal history, and post- 
process determination of surface heat flux distri- 
butions. 

We examine solution accuracy as a function of the 
initial boundary heat flux specification by arbitrarily 
setting q0 = 0 in equation (1 Id) and obtaining solu- 
tions corresponding to Aq = 0.1, 1, 10, IO*, lo3 and 
104. (Similar tests using Aq = 0 and q0 = 0, 1, 10, lo’, 
lo3 and lo4 provide essentially identical final results.) 
Notice that the maximum initial (dimensional) par- 
ameter value is lo4 times larger than the characteristic 
conductive heat flux IC; ’ ( = k(T,,, - T,)/R,), which is 
given following equation (8). 

Experimental and predicted solid phase tem- 
perature fields corresponding to Aq = lo4 are shown 
in Fig. 5. As shown, the difference between actual and 
predicted 3D solid temperature distributions is small. 
Similar results are obtained for Aq = 0.1, 1, 10, lo2 
and 103. Based on the work of Hughes and Brooks 
[ 19, 201, oscillations in the calculated ‘temperature 
fields may be due to imposition of primary boundary 
conditions along the workpiece’s trailing edge. In 
essence, the grid may be too coarse to resolve tem- 
perature variations (in the travel direction) near the 
trailing edge. Although the oscillations might be sup- 
pressed by imposing secondary (i.e. heat flux) bound- 
ary conditions along the trailing edge [19, 201, such a 
modification in the present study would introduce 
additional unknown heat fluxes into P. Thus, given 
the illustrative nature of this study and given that such 
modifications would, at best, provide only secondary 

z=2h, 

z=h, 

Fig. 5. Comparison between experimental (light lines) and 
calculated (heavy lines) temperature distributions, Case I. 
Aq = 1 x lo4 and q0 = 0. eavg = 2.4%, emar = 5.0% and iso- 

therm spacing is 1.9% 
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improvements in solution accuracy (given the accu- 
racy of existing solutions), no modifications were 
attempted. 

In order to assess the accuracy of any given solu- 
tion, we define the maximum and average relative 
temperature errors as follows : 

IY,-fil 
emax = max ___ ( > Yi 

eavg = fi (v). 
I 

(13) 

Based on these definitions, it is found that error in 
Case I remains virtually constant, with e,,,,, - 4.9% 
and eavg - 2.3% for 0.1 < Aq < 104. Thus, the inverse 
procedure is robust in this case, providing relatively 
low and essentially constant levels of error for every 
initial guess. 

Predicted boundary heat flux distributions along 
the line segments (Y, Z) = (D2, 0) ; X, < X < X2 and 
(Y, Z) = (D2, L,) ; X1 < X < A’, are shown in Fig. 6 
(here, XI and X, are the minimum and maximum X- 
coordinates of surface nodes having parameterized 
heat fluxes ; refer to Fig. 2). Note that the left and right 
sides of the graph in Fig. 6 correspond respectively to 
the right- and left-most interior surface nodes in Fig. 
2 (labeled with interlocking OS and qs). As indicated, 
nearly identical distributions are predicted for 
Aq < 10. For Aq > 100, predicted fluxes vary by up 
to 200% from those shown. We argue that the dis- 
tribution shown is accurate since virtually identical 
distributions are obtained from widely varying initial 
guesses (i.e. Aq = 0.1, 1.0 and 10). 

Case II. Inverse solutions when the melt shape is known 
and jixed on the upper and lower planes, z = 0 and 
z = 2h, 

In this case, the fusion boundary is fixed to the 
experimentally observed shape on the upper and lower 
planes, z = 0 and z = 2h,. P thus describes the the 
melt shape on the center plane (z = h,) and the nor- 
mal heat flux distribution on z = 0 and z = 2h,. Thus, 

0.400 

0.300 0 Aq=O.l 

q 0.200 0 Aq=l.O 

0.100 - z=2hm/-m 
* Aq=lO.O 

0.000 / 
\ 

Fig. 6. Predicted dimensionless boundary heat flux distri- 
bution. The dimensionless coordinate x’ and dimensionless 
node spacing Ax. are defined at the top of Fig. 2. Thus, the 
right and left sides of this graph correspond to the left-most 
and right-most interior boundary nodes in Fig. 2 (which are 

labeled with interlocking OS and qs). 

M = 17 and the regularization term B [given by equa- 
tion 2(a)] only includes the shape parameters on the 
middle plane. Since the ratio of embedding depth to 
workpiece thickness (h, R,/L,“) is either zero (surface 
temperature measurements) or much smaller than 1, 
melt shapes on z = 0 and z = 2h, can be directly 
observed or accurately estimated from the visible 
shape (assuming a full penetration melt). Thus, this 
problem has wider applicability than the first. 

We examine solution accuracy as a function of the 
initial melt shape specification by arbitrarily setting 
q0 = Aq = 0 in equation (1 Id), rem) = 2.5 in equation 
(1 lb), and by examining solutions corresponding to 
Ar = 0, 1.0, 2.0, 3.0, 4.0 and 5.0. To assess the accu- 
racy of predicted shapes, we define the average differ- 
ence between actual and predicted boundaries as 
follows : 

eb = f &lri--Pjb)i) (14) 
b I 

where ri is the ith measured boundary shape 
parameter, P^, (b) is the corresponding predicted value 
and Nb is the number of parameters describing the 
melt shape. (In this case, Nb = 7.) 

Initial, predicted and experimental melt shapes and 
associated temperature fields for the case Ar = 5.0 are 
shown in Fig. 7. Similar results are obtained for the 
other Ars tested. Similar to the results in Case I, aver- 
age and maximum temperature differences, envg and 
e Inax> and average differences between predicted and 
experimental boundary parameters, eb, are found to 
remain essentially constant over 0 < Ar < 5.0, with 
eavg - 2.4%, emax - 4.0% and eb - 2.6%. Thus, the 
inverse procedure is again robust, providing essen- 
tially identical inverse temperature and shape solu- 
tions for every initial shape tested. Corresponding 
predicted nodal heat fluxes (not shown) differ by less 
than 3% from the nodal values shown in Fig. 6. 

Case III. Preliminary results concerning simultaneous 
inverse solutions for solid phase temperature fields and 
complete fusion boundary shapes 

Here, the parameter vector describes both the melt 
boundary and the boundary heat flux. Thus, M = 31 
and B is given by equation (2b). Initial shape guesses 
are generated by assuming a linear depthwise vari- 
ation in melt width superposed with a random com- 
ponent. Thus, rfl (‘I = 5.0, rp) = 2.5 and r$‘) = 0.0 in 
equations (1 la)-(1 lc) (where /I = 1,. ,7). Inverse 
solutions are then determined for Ar equal to 0.0, 1 .O, 
2.0, 3.0, 4.0 and 5.0. Note, in the current program, 
reasonably accurate solutions (satisfying eb ,< 0.1) 
require that r@‘), r@“) and r(l) values lie within approxi- 
mately 6&70% of actual values. The initial heat flux 
is specified as q0 = Aq = 0 in equation (1 Id). 

Initial, predicted and experimental melt shapes and 
associated temperature fields for the case Ar = 5.0 are 
shown in Fig. 8. Similar results are obtained for the 
other Ars tested. While inverse solutions are somewhat 
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a b c 

Fig. 7. Comparison between experimental (light lines) and predicted (heavy lines) interior melt shapes and 
solid phase temperature distributions, Case II. The guessed (heavy) and experimental (light) interior melt 
shapes on z = h, are shown in (a) while corresponding predicted (heavy) and experimental (light) shapes 
are shown in (b). Corresponding predicted and experimental temperature distributions are shown in (c). 

Ar = 5 and q0 = Aq = 0. eavg = 2.4%, emax = 4.0% and eb = 2.6%. Isotherm spacing is 1.9”C. 

accurate, the predicted boundary shape is too wide on 
the upper and center planes. Temperature dis- 
tributions in the region between the melt boundary 
and the plane y = fir1 (d, is the distance from the x- 
axis to the first cohlmn of thermocouples in Fig. 2) 
correspondingly exhibit a fair degree of mismatch. In 
contrast, temperature fields within the measurement 
volume (between the planes y = d, and y = dJ show 
good agreement. This last result is expected since Fin 
equation (1) is based on temperature measurements 
from this volume. .4ssociated errors, eavg, emax and 
eb, fall within fairly narrow ranges : for 0 ,< Ar < 5.0, 
2.2% < eavg < 2.7%, 4.4% < emax < 6.9% and 
4.1% < eb < 7.5%. 

Solution accuracy in the present experiment is 

essentially independent of the boundary heat flux. 
This feature is apparent since relatively accurate and 
nearly identical inverse solutions are obtained in every 
Case III test attempted ; corresponding predicted heat 
fluxes, however, vary by up to 400% from those deter- 
mined in Cases I and II (Fig. 6). This feature becomes 
particularly clear when considering Case I. There 
accurate temperature fields are obtained for all Aqs 
tested while predicted fluxes exhibit a 200% variation 
for Aq > 100. Physically, since the characteristic Biot 
number (Bi = h&/k) is only of the order of lo-’ to 
10-l (based on an estimated h of 1 to 10 W mm2 K-’ 
[25]), boundary information propagates by con- 
duction to the measurement locations without sig- 
nificant interference (noise) from external heat fluxes. 

a b C 

Fig. 8. Comparison between experimental (light lines) and predicted (heavy lines) melt shapes and solid 
phase temperature distributions, Case III. The guessed (heavy) and experimental (light) melt shapes are 
shown in (a) while corresponding predicted (heavy) and experimental (light) shapes are shown in (b). 
Corresponding predicted and experimental temperature distributions are shown in (c). Ar = 5 and 

q. = Aq = 0. eava = 2.2%, emax = 4.9% and eb = 7.0%. Isotherm spacing is 1.9”C. 
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(Note, however, that measurement locations must be 
located within the thermal penetration zone sur- 
rounding the melt boundary, even when external 
boundaries are adiabatic and temperature measure- 
ments are noise free [lo].) It is thus anticipated that 
inverse solution accuracy will be much more sensitive 
to the boundary llux in cases where one or more 
boundaries are subject to large heat inputs (e.g. weld- 
ing) or losses (e.g. cryosurgery). In these cases, a 
hybrid inverse approach based on concurrent thermal 
and acoustic or electromagnetic sensing may be 
necessary. 

Although the present set of results (Case III) are 
preliminary, the algorithm may provide sufficient 
accuracy for many applications, e.g. process control. 
Similarly, in cases demanding high accuracy, the algo- 
rithm could prove useful in generating accurate initial 
guesses for seeding larger inverse procedures (based, 
for example, on more temperature measurements on 
finer meshes). 

CONCLUSIONS 

An inverse method has been developed for pre- 
dicting multi-dimensional phase change boundaries 
and associated 3D solid phase temperature dis- 
tributions during quasi-steady phase change 
processes. The technique fixes finite element nodes at 
known temperature locations and relies on a coarse, 
spatially limited mesh. This approach is designed to 
effectively linearize nonlinear solid conduction prob- 
lems and to reduce direct and overall solution costs. 
Upwind differencing is implemented to circumvent 
instabilities associated with large grid Peclet numbers 
while first-order regularization is used to enhance 
solution stability. 

An analog welding apparatus is used to test the 
algorithm under three sets of conditions. In the first 
case, the parameterized melt shape is fixed at its exper- 
imentally observed location and solid phase tem- 
perature fields and boundary heat flux distributions 
are determined as a function of the initial heat flux 
specification. In the second case, the melt boundary is 
fixed at its experimentally observed location on upper 
and lower planes. The inner, nonvisible boundary, 
the solid phase temperature field, and the solid phase 
boundary heat flux distribution are then determined 
as functions of the initial interior melt shape speci- 
fication. In the last, preliminary test case, inverse solu- 
tions for complete 3D melt shapes and solid tem- 
perature distributions are obtained as functions of the 
initial boundary specification. 

Inverse solution accuracy is found to be insensitive 
to the boundary heat flux distribution. Due to the 
small ratio of convective to conductive heat transfer, 
boundary shape information propagates (subject to 
diffusive smearing) with little interference (noise) from 
external fluxes. This result suggests that mul- 
tidimensional inverse phase change problems involv- 

to solve. In these cases, hybrid inverse approaches 
based on concurrent thermal and acoustic or electro- 
magnetic sensing may be necessary. 
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