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Abstract

Time average shock-induced boundary layer separation is investigated using scale analyses, analytical modeling, and exper-
iments. While the study focuses on turbulent boundary layer separation in overexpanded rocket nozzles, many of the analyses
presented apply to the broad family of free interaction, shock-separated flows in which the structure of the boundary layer–shock
interaction zone is self-similar and independent of the shock generator. The scale analyses lead to two approximate expressions
for the wall pressure ratio at separation; over a range of separation Mach numbers, both models provide reasonable predictions
of observed separation pressure ratios. The second model, representing a refinement of the first, appears to provide a fairly gen-
eral description of free interaction separation: the model approximately captures separation pressure ratios observed in supersonic
flow over backward facing steps and in the case of overexpanded nozzle flow, provides predictions that are consistent with the
free interaction model. Experiments are carried out in a sub-scale nozzle under overexpanded, cold-flow conditions. The princi-
pal observations are as follows: (i) For the range of separation Mach numbers investigated (5.0 � Mi � 5.4), nominal separation
line locations can be predicted with reasonable accuracy using the classical generalized quasi-one-dimensional compressible flow
model and an appropriate separation criterion. (ii) Over the same range of overexpanded flow conditions, the time-average pressure
rise over the shock interaction zone can be accurately fit by the free interaction model.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Shock-induced separation of turbulent boundary layers represents a long-studied problem in compressible flow,
bearing, for example, on applications in high speed aerodynamics, rocketry, wind tunnel design, and turbomachinery.
Experimental investigations have generally sought to expose essential physics using geometrically simple configura-
tions, e.g., supersonic flow over compression ramps [1–4], curved surfaces [2], backward and forward facing steps [2],
simplified wing shapes [5], and various blunt objects [4,6,7]. While a variety of computational and analytical meth-

* Corresponding author. Department of Mechanical Engineering & Engineering Science. Tel.: +704 687 4158; fax: +704 687 6069.
E-mail address: rkeanini@uncc.edu (R.G. Keanini).

1 Staff Scientist, Structural Dynamics and Loads Group.
0997-7546/$ – see front matter © 2006 Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.euromechflu.2006.10.002



R.G. Keanini, A.M. Brown / European Journal of Mechanics B/Fluids 26 (2007) 494–510 495
ods have also been developed for treating the problem, the methods are typically applicable to specific compressible
flow regimes, i.e., transonic, supersonic or hypersonic flow, and moreover, due to the intrinsic unsteadiness of the
separation process, require problem-specific tuning [8,9].

A large class of shock separated turbulent boundary layer flows, including those in overexpanded rocket nozzles
[8], exhibit self-similar structure in the vicinity of the nominal (time-average) separation line. Here, the time-average
pressure distribution over the shock interaction zone varies in a qualitatively distinct fashion, independent of the
downstream obstacle causing the separation-inducing shock [2,10,11]. Similar structure is likewise observed when
separation is produced by incident shocks [2]. Since this feature arises in both laminar and turbulent boundary layers,
where downstream influence propagates well upstream in laminar boundary layers [12], the self-similar structure of
the boundary layer-shock interaction zone reflects co-dominance of the hyperbolic inviscid outer flow and the local
compression-induced pressure rise produced by rapid boundary layer thickening [12].

Chapman et al. [2] used these notions to develop the free interaction model of shock-induced separation. The
model assumed that local boundary layer thickening and associated compression of the outer flow were coupled
and independent of downstream conditions (see Section 3.1 below). Erdos and Pallone [13] formalized Chapman’s
approach by developing a wall pressure correlation to describe the pressure variation over the boundary layer–shock
interaction zone. Carriere et al. [14], focusing on separation in rocket nozzles, extended this approach to include
separating flows subject to external pressure gradients, leading to the generalized free interaction model.

This paper investigates time-average, shock-induced turbulent boundary layer separation in over-expanded rocket
nozzles. Although focused on this particular problem, much of the development applies to the same broad family of
shock-separated flows encompassed by the free interaction model. The objectives are to first present and examine an
alternative to the free interaction model, with a view toward obtaining a fuller understanding of the free interaction
process. Simple scale analyses of transverse momentum transport across the separating boundary layer are presented
and used to derive criteria for estimating the approximate time-average separation pressure ratio, Pi/Pp , as a function
of the inviscid separation Mach number, Mi = M(xi), where Pi is the time-average wall pressure at the point of
incipient separation, xi , and Pp is the peak wall pressure at the downstream limit of the shock interaction zone, xp;
see Fig. 1. In the case of rocket nozzle flows, where separation-induced side loading constitutes an intrinsic feature of
low altitude flight [15,16], knowledge of the separation criterion

Pi

Pp

= Fo(Mi) (1)

is crucial since it allows determination of the corresponding separation line location.
Second, we examine the applicability of the free interaction model to shock-separated flow in nozzles. Observations

of boundary layer separation in overexpanded rocket nozzles [8,14] indicate that the structure of the time-average
shock interaction zone, as revealed by wall pressure measurements, is well-described by the free interaction model.
However, since the model incorporates up to four free parameters (as described in Section 3.1 below), the degree to
which the model captures the actual physics of separation remains unclear. Focusing on separation pressure ratios
predicted by the model, we obtain further evidence of the model’s applicability to separating nozzle flows.

Third, the paper experimentally investigates separation in overexpanded rocket nozzles under conditions where the
separation Mach number, Mi , lies outside the range of validity of the above scale analyses (Mi � 4.5). Here, for sim-
plicity, observed mean wall pressure variations are studied using the generalized quasi-one-dimensional flow model
and a method incorporating the model is presented for predicting the nominal boundary layer separation location as
a function of the nozzle pressure ratio (i.e., the ratio of nozzle chamber pressure to ambient pressure). In addition,
preliminary results in which the free interaction model is fit to observed time-average shock interaction zone pressure
variations are presented.

2. Scale analysis of turbulent boundary layer separation

2.1. Background

Due to the importance of shock-induced separation in overexpanded rocket nozzles, the problem has received
significant attention in the rocket design community [15–21]. This work has been motivated primarily by a desire
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to improve nozzle performance under overexpanded flow conditions, generally extant during low altitude, high am-
bient pressure flight, and to mitigate against nozzle side loads produced by asymmetric boundary layer separation
[15,16,22]. Two distinct separation processes have been identified in overexpanded rocket nozzles, free shock sepa-
ration [8,23], in which the turbulent boundary layer separates without reattachment, and restricted shock separation
[16,22], in which the separated boundary layer reattaches, forming a small, closed recirculation zone immediately
downstream of the separation point. This article will focus on free shock separation.

The time-average flow features associated with free shock separation in nozzles were first characterized by Sum-
merfield et al. [23], and are depicted schematically in Figs. 1 and 2. As shown, the time average pressure along the
nozzle wall increases from Pi at the incipient separation point, xi , to a peak value of Pp at xp . Depending on the
nozzle and the shock location relative to the nozzle exit, Pp is typically on the order of 80 to 100% of the ambient
pressure, Pa . The time-average separation point, xs , lies immediately upstream of xp .

Fig. 1. Schematic of shock-induced boundary layer separation in rocket nozzles. The pressure variation shown is characteristic of free interaction
separation problems. Adapted from Ostlund [8].

Fig. 2. Detailed view of the boundary layer separation region.
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Of central importance in nozzle design is determining both the conditions under which separation will occur and
the approximate separation location. A number of criteria, as represented by Eq. (1), have been proposed for predicting
the nominal free shock separation point, xs [8,19,23–28]. These can be grouped into one of three categories: purely
empirical correlations having no apparent physical basis [23,25,26], semi-empirical correlations in which a theoretical
model is developed and then fitted to data using one or more adjustable parameters [14,19,28], and purely empirical
correlations which have an apparent though untested physical basis [8,27]. Since the boundary layer pressure rise
between xi and xs depends primarily on the inviscid flow Mach number, Mi [2,29], most criteria relate either a gross
separation pressure ratio, Pi/Pa , or more recently, a refined ratio, Pi/Pp , to Mi [8]. Given the separation pressure
ratio, the separation location can then be determined using an appropriate model of flow upstream of separation.

The last group of criteria above are relevant to the present study. In particular, all criteria in this group are
based on the ad hoc assumption that the separation pressure ratio corresponds to the pressure jump across the
separation-inducing oblique shock. For turbulent boundary layers, this appears to be a reasonable assumption; Liep-
mann et al. [12] demonstrated that rapid thickening of the boundary layer near separation causes associated inviscid
compression waves above the boundary layer to rapidly coalesce into an oblique shock. However, there has been no
attempt to place this key assumption on a sound physical basis. This section of the paper will attempt to do this.

Although the actual separation process is highly dynamic, in the following we will focus on time average flow
dynamics in the vicinity of the shock interaction zone. In order to provide proper physical context, we briefly review
the dynamical features associated with free shock separation and note simplifying assumptions to be made. Shock
motion over the shock interaction zone appears to be comprised of essentially two components: (i) a low frequency,
large scale motion produced by flow variations downstream of the separation point, and occurring over the length of
the shock interaction zone, lp = xp − xi , at characteristic frequencies, fs [on the order of 300 to 2000 Hz in the case
of compression ramp and backward facing step flows [3,8]], and (ii) a high frequency, low amplitude jitter produced
by advection of vortical structures through the shock interaction zone [3]. We will limit attention to time scales that
are long relative to f −1

s . In addition, it will be assumed throughout that the flow is statistically stationary and that the
separation process is two-dimensional. In reality, three-dimensional effects are generally important [8].

The time average pressure gradient over the shock interaction zone (xi � x � xp), given approximately by

∂P

∂x
∼ Pp − Pi

lp
(2)

in reality reflects the intermittent, random motion of the shock between xi and xp [3]. As the shock-compression wave
system oscillates randomly above (and partially within) the boundary layer, the associated pressure jump across the
system is transmitted across the boundary layer on a time scale τs ∼ δi/

√
kRTi , where δi and Ti are the characteristic

boundary layer thickness and temperature in the vicinity of xi . Under typical experimental conditions, τs is much
shorter than the slow time scale, f −1

s (where τs ≈ 1 to 10 µs); thus, the instantaneous separation point essentially
tracks the random position of the shock-compression wave system, where the position of the separation point is
described by a Gaussian distribution over the length of the interaction zone [3].

2.2. Scale analysis I

Considering the vertical momentum balance immediately downstream of the separation point xs , it is recognized
that the boundary layer lifts off of the wall due to a vertical gradient in pressure [2,30]. Thus, the vertical advection of
vertical momentum must be of the order of the vertical pressure gradient:

ρv
∂v

∂y
∼ ∂P

∂y
(3)

or in approximate form,

ρ2
v2
s

δs

∼ Pp − P2

δs

, (4)

where the density ρ2 of the boundary layer near xs is approximated as the free stream density downstream of the shock,
vs is the characteristic vertical velocity component within the boundary layer near xs , and δs ≈ δi is the characteristic
boundary layer thickness near xs . Refer to Figs. 1 and 2. The pressure difference across the separating boundary layer,
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Pp − P2, is estimated as the difference between the peak wall pressure, Pp , in the vicinity of xp and the free stream
pressure immediately downstream of the oblique shock. The density estimate in (4) recognizes that the boundary layer
has passed through the compression wave system at the foot of the oblique shock.

Eliminating δs from (4) and solving for vs yields

vs ∼
√

Pp − P2

ρ2
. (5)

From Fig. 2, we note that at the separation point, vs is related to the characteristic horizontal velocity component,
us by

vs

us

∼ tan θ, (6)

where θ is the characteristic angle of deflection between the separating boundary layer and the nozzle wall. The
magnitude of us is estimated by again noting that the boundary layer flow has passed through the compression wave
system at the foot of the oblique shock and that, as indicated in Fig. 2, the time average turbulent boundary layer
velocity profile is nearly flat. Thus, us is on the order of the x-component (U2) of the inviscid flow velocity (Ṽ2)

immediately downstream of the oblique shock:

us ∼ U2 ∼ Ṽ2 cos θ. (7)

Using the ideal gas relation, ρ2 = kP2/(kRT2), and inserting (5) in (6) we then obtain

tan θ ∼
√

Pp − P2

kP2

1

M2x

, (8)

where M2x = M2 cos θ , and M2 is the inviscid flow Mach number immediately downstream of the oblique shock.
Rewriting Pp/P2 as (Pp/P1)(P1/P2) and solving (8) for Pp/P1 finally yields

P1

Pp

∼
[

1

1 + kM2
2 sin2 θ

]
P1

P2
. (9)

Identifying P1/Pp as the critical wall pressure ratio at which separation occurs, i.e., P1/Pp ≈ Pi/Pp , noting that
M2 is given by the oblique shock relation

M2
2 = (k + 1)M2

1 sin2 β + 2

2kM2
1 sin2 β − (k − 1)

sin−2(β − θ) (10)

and recognizing that Mi ≈ M1, where M1 is the free stream Mach number immediately upstream of the oblique shock,
it is seen that (9) provides an explicit, physically-based relationship between Pi/Pp and the pressure ratio, P1/P2,
across the oblique shock. The next scale analysis refines the estimates for streamwise inertia and cross-layer pressure
gradient, and leads to a near-identity between Pi/Pp and P1/P2.

2.3. Scale analysis II

In order to refine the first scaling argument, we base the second analysis on momentum transfer in a curvilinear
streamline coordinate system. Thus, in the vicinity of the separation point, xs , and in analogy with the first analysis,
we recognize that a fluid particle’s normal acceleration component within the separating boundary layer is determined
by the normal component of the pressure gradient across the separating boundary layer. Thus, balancing these terms
yields:

ρ
V 2

s

R
∼ ∂P

∂n
, (11)

where Vs is the particle speed in the streamwise (s-) direction, and R−1 is the local streamline curvature. The curvature
can be evaluated by first defining the shape of the boundary layer’s outer-most streamline (i.e., a streamline in the
vicinity of δ99 which is roughly parallel to the local displacement thickness) as r(x) = f (x), where r(x) is the radial
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distance from the nozzle centerline to the streamline, evaluated at axial position x. Thus, R−1 = f ′′(
√

1 + (f ′)2 )−3.
Expressing V 2

s in terms of local Cartesian velocity components, V 2
s = u2

s + v2
s , and estimating us and vs by their

approximate free stream magnitudes downstream of the oblique shock (since again, at axial position xs , the boundary
layer has passed through the compression system below the shock), we obtain V 2

s ≈ U2
2 + V 2

2 . Replacing terms in
(11) by their approximate magnitudes then leads to

ρ2
U2

2 + V 2
2

R
∼ Pp − P2

δs

, (12)

where arguments similar to those used above lead to the given pressure gradient and density estimates.

2.3.1. Boundary layer thickness
In order to proceed, we must estimate the magnitude of the boundary layer thickness, δs , immediately upstream of

the separation point, xs . First, note that at the wall between xi and xs , the x-momentum equation yields the approxi-
mate balance

μ
∂2u

∂y2
∼ ∂P

∂x
, (13)

where μ is the dynamic viscosity. Estimating the magnitude of each term in this equation leads to

U2

δ2
s

∼ 1

μ

Pp − P1

ls
, (14)

where, since we are focusing on the neighborhood of xs , u is approximated as U2, and where it is recognized that
the streamwise pressure increases from approximately P1 near xi to approximately Pp near xs . [Although P equals
Ps at xs , due to the relatively small difference between Ps and Pp , for simplicity, we approximate P(xs) as Pp .] The
x-length scale, ls = (xs − xi), is approximately equal to the length of the shock interaction zone, lp = xp − xi .

Considering the continuity equation near xs , we recognize that since the boundary layer acquires a vertical velocity
component as it travels toward and past xs , and since associated mass advection and volumetric dilatation terms,
ρ−1u · ∇ρ, and ∇ · u, respectively, are of the same order, then

∂u

∂x
≈ ∂v

∂y
(15)

or in terms of orders of magnitude,

U2

ls
∼ Vs

δs

, (16)

where again the vertical velocity near xs is on the order of V2, the inviscid flow’s vertical velocity component imme-
diately downstream of the oblique shock. Thus, since V2/U2 ∼ tan θ , we obtain the following estimate for δs/ ls :

δs

ls
∼ tan θ. (17)

Note that this relationship is analogous to one of the key assumptions underlying Chapman’s [2] free interaction
model, viz, the displacement of the external inviscid flow is determined by the streamwise rate of boundary layer
growth. Using (17) in (14) and solving for δs finally yields an estimate for the boundary layer thickness near xs :

δs ∼ μM2a2 cos θ

(Pp − P1) tan θ
, (18)

where U2 = M2a2 cos θ and a2 is the sound speed.
Before proceeding, and as an aside, we rewrite the estimate in (18) as

μU2/δs

Pp − P1
∼ τ2

�P
∼ tan θ. (19)

Recognizing that the resultant stress on a fluid particle near xs is approximately equal to the vector sum of the hori-
zontally acting viscous shear stress, τ2, and the vertically-acting net pressure, �P = Pp −P1, then (19) shows that the
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resultant acts in the direction of the separating boundary layer, θ , as it must. Since δs/ ls ∼ tan θ , then (19) is also con-
sistent with Chapman’s [2] estimate for τ2/�P . Likewise, Chapman et al. [2] argued that δ∗/ls ∼ Cf = τw/(ρ1u

2
1/2),

where Cf is the friction factor; since τw ∼ �P , then for nominally fixed θ (see Section 2.4 below), (19) is also con-
sistent with Chapman’s estimate for Cf .

Returning to Eq. (12), inserting (18) and the expression for R−1 and rearranging leads to an expression of the
following form:

(
Pp

P1

)2

− (1 + G)
Pp

P1
+ G(1 + ε) ∼ 0, (20)

where G = P2/P1, ε = kM3
2 cos θμ2f

′′/(P1f
′), μ2 is the gas viscosity near the separation point, and where the

approximation tan θ ≈ −f ′ has been used. Under typical conditions, e.g., those extant in experiments described below
[Mi ≈ 5, θ ≈ 16◦, To = 310 K, Po = 1.24 Mpa], ε = O(103), i.e., ε 	 1 [where f ′′|max ≈ (dθ/dx)max = O(1)]. Thus,
solving (20) for Pp/P1 and neglecting terms smaller than O(ε), we finally obtain

Pp

P1
∼ G − ε

2G

G − 1
. (21)

In the following, we will neglect the O(ε) second term in this equation. Importantly, and in slight contrast with (9),
this equation shows that P1/Pp ≈ Pi/Pp ∼ P1/P2, demonstrating that the separation pressure ratio essentially cor-
responds to the oblique shock pressure ratio.

2.4. Shock and flow deflection angles

In order to close the approximate models embodied in (9) and (21), it is necessary to specify the shock angle, β ,
and the flow deflection angle, θ . Referring to earlier work, Summerfield et al. [23] used measured separation pressure
ratios and Mach numbers in the oblique shock relations to infer θ ; based on their data, they inferred a nominally
fixed value, θ ≈ 16◦. Using the same approach, Frey [27] likewise found that θ remained essentially constant for the
data sets he analyzed. By contrast, Ostlund [8], again using the same approach, argued that θ varies with Mi , albeit
weakly; he fit his estimate with a linear relationship, θ = 1.678Mi + 9.347, valid for 2.5 � Mi � 4.5. For this range
of Mi , however, the correlation indicates that θ only varies from 13.5◦ and 16.9◦. Based on these indirect estimates,
we assume that θ is constant; for simplicity, we will arbitrarily adopt the average value of θ indicated by Ostlund’s
correlation, θ ≈ 15.2◦, nearly equal to Summerfield’s [23] estimate. Second, we follow Summerfield [23] and assume
that the oblique shock relation

tan θ = 2 cotβ(M2
1 sin2 β − 1)

(k + 1)M2
1 − 2(M2

1 sin2 β − 1)
(22)

applies to the inviscid flow outside the separating boundary layer.

3. Auxiliary models

One of the objectives of this work centers on investigating the suitability of simple models for studying and
predicting separation in rocket nozzles. Having developed the preceding scaling analyses, we now briefly review
Chapman’s [2] free interaction model of shock-induced boundary layer separation and review the classical generalized
quasi-one-dimensional compressible flow model [31,32], where the latter will be used to investigate flow upstream of
separation. As an aside, and with regard to our use of the quasi-one-dimensional model, we note that a variety of other
approaches can be used to compute the inviscid upstream flow, including, e.g., MacCormack’s method for solving
Euler’s equations [33] and the method of characteristics. Here, consistent with the approximate nature of the separa-
tion models derived, and more importantly, in keeping with our goal of identifying the simplest possible approach, we
have chosen the quasi-one-dimensional model.
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3.1. Free interaction model

Chapman’s [2] original analysis posited that thickening of the boundary layer displacement thickness displaced the
inviscid flow above the boundary layer according to

P(x) − Pi = ρiu
2
i√

M2
i − 1

dθ, (23)

where dδ∗/dx = dθ , and where the subscripts refer to conditions at xi . He then estimated terms in the balance between
the axial pressure gradient and cross-stream shear stress gradient as

P − Pi

ls
∼ τwi

δ∗ (24)

(where τwi is the wall shear stress near xi ), then estimated dδ∗/dx as δ∗/ls (where δ∗ ∼ δs), and finally combined and
linearized (for small P − Pi) to obtain

P − Pi

qi

∼
√

Cf i

(M2
i − 1)1/4

, (25)

where qi = ρiu
2
i /2 and Cf i = τwi/qi .

Dividing the left side of (25) by the right suggests that

P − Pi

qi

(M2
i − 1)1/4√

Cf i

∼ f (x − xi) (26)

i.e., that the term on the left depends only on position within the shock interaction zone. Erdos and Pallone [13]
exploited this idea to develop a wall pressure correlation, F(s), which describes the self-similar pressure variation
over the shock interaction zone, where

F(s) = P − Pi

qi

(M2
i − 1)1/4√

2Cf i

(27)

and where s = (x − xi)/(xs − xi). Carriere et al. [14] extended this work by developing a generalized version of (27),
suitable for the non-uniform flows in nozzles. In this case, the self-similar pressure variation over the separation zone
is described by

F(s;p′) =
√

P − Pi

qi

ν̄(s) − ν(s)√
Cf i

, (28)

where p′ = (δ∗
i /qi)(dP/dx) is the normalized inviscid flow pressure gradient immediately upstream of xi , ν(s) is the

Prandtl–Meyer function, and ν̄(s) is the value of the function in the absence of separation. For a range of pressure
gradients observed in a number of different nozzles, the two correlations, F(s) and F(s;p′), are nearly identical [8].

Given F(s;p′) (or F(s)), the predicted separation pressure ratio, Pi/Pp , can be determined from either (27) or (28);
in the latter case, we follow Chapman [2] and linearize (28) to obtain

Pi

Pp

=
[
F(sp;p′)kM2

i

√
Cf i√

2 (M2
i − 1)1/4

+ 1

]−1

, (29)

where ν̄(s) is approximated as νi and where F(sp;p′) [= 6.0; see [8]] is the value of F(s;p′) at the effective separa-
tion point, sp [= (xp − xi)/(xs − xi)]. It is important to note that Ostlund [8] has developed an alternative separation
criterion which requires a priori specification of both the plateau pressure, Pp , and the friction coefficient, Cf i at xi .
The criterion in (29) by contrast only requires information on Cf i . Fortuitously, and as originally shown by Chapman
et al. [2], for shock-induced separation of turbulent boundary layers, the dependence of Pi/Pp on Cf i (or equivalently,
on Reδ∗ , the displacement thickness Reynolds number at xi) is weak, at least over the range of Mach numbers inves-
tigated (1.3 � Mi � 4.0), consistent with both the second scale analysis above and previously developed correlations
[8,19,24–27].
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Fig. 3. Schematic of Nozzle Test Facility. Throat diameter is 2.54 cm, ratio of nozzle exit to throat areas is 30:1, nozzle length (from chamber) is
67.8 cm, and tap spacing is 2.54 cm.

3.2. Generalized quasi-one-dimensional flow model

Full descriptions of this model are presented, for example, by Shapiro [31] and Oosthuizen and Carscallen [32].
Here, we describe only the results relevant to the present study. The variation of free stream Mach number within a
variable area, adiabatic duct subject to friction at the wall is given by

dM2

M2
= 1 + (k − 1)M2/2

1 − M2

[
−2

dA

A
+ kM2f

P

A
dx

]
, (30)

where A is the local cross-sectional area, P is the corresponding perimeter, and f = Cf is the Fanning friction factor.
Based on measurements described in Section 4 below, this simple model appears to provide a reasonably accurate
description of nozzle wall pressure variations upstream of separation.

4. Experimental measurements

A series of experiments were carried out in the Nozzle Test Facility at Marshall Space Flight Center. The ex-
periments were designed to investigate the role of boundary layer separation on nozzle side-loading and to examine
fluid–solid interactions underlying oscillatory modes observed in side-loaded nozzles.

A sub-scale, ideal-contour nozzle, having an area ratio of approximately 30:1 (exit to throat area) was operated
under a range of cold-flow, overexpanded conditions. The nozzle was outfitted with a series of pressure taps, as shown
schematically in Fig. 3, where tap spacing in the axial direction was 0.0254 m. Two sets of azimuthally spaced taps
were also used, placed at two axial locations, at 45◦ intervals around the nozzle circumference. The axially-spaced
taps allow measurement of the instantaneous and time-average axial pressure distribution within the nozzle while the
azimuthally distributed taps allow examination of the instantaneous and time-average separation line (under conditions
where the shock interaction zone coincides with either set of azimuthally distributed taps).

The experimental nozzle was, on one hand, designed to approximately emulate the MC-1 nozzle [34], while on
the other, maximize anticipated separation loading. Given the non-standard nature of the design, we list in Table 1
information on nozzle radius as a function of axial position; see Appendix A. The throat diameter was 0.0254 m and
the design Mach number was 5.25.

Pressures at all taps were sampled at 10 kHz, sufficiently high to allow study of the low-frequency, large-amplitude
component of shock motion [4], but not sufficient to resolve small-scale, high frequency jitter. Once nominally steady
conditions were achieved, pressure data was taken from all taps for a period of 8.3 seconds. Finally, dehumidified air
was used in all tests, eliminating the potential for condensation shock formation.

5. Results and discussion

5.1. Model I and II separation pressure ratios

The scaling relationships in (9) and (21) were fit to available data on separation in overexpanded nozzles. Data on
free shock separation was obtained from a number of sources [15,19,20,35,36], and represents flow in a variety of
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Fig. 4. Comparison of model I with separation measurements in rocket engine nozzles. The fitting constant equals 1.52.

Fig. 5. Comparison of model II with separation measurements in rocket engine nozzles. The fitting constant equals 1.14.

nozzle geometries, in both full-scale and sub-scale models, under both cold flow and hot fire conditions. Although
the working fluid in most experiments was air, Bloomer’s [20] hot fire measurements, which used a mixture of JP-4
rocket fuel and liquid oxygen (k = 1.2), are included in estimating best fit parameters. This approach is allowable due
to the weak dependence between separation pressure ratio and k [16,19]. Since solutions for P1/P2 at a turning angle
of θ = 15.2◦ do not exist for Mi � 1.7 [19], only data obtained at Mi � 1.75 are used in the fitting procedure. For
comparative purposes, however, the limited data available at Mi � 1.75 are presented in the graphs below.

A comparison of separation pressure ratios predicted by model I [Eq. (9)] with available data, shown in Fig. 4,
indicates that the model provides reasonable predictions over the range 1.75 � Mi � 4.0. The least square fitting
constant is found to be 1.52. A similar comparison using model II, shown in Fig. 5, likewise indicates reasonable
agreement over 1.75 � Mi � 4.5, with significantly improved agreement for Mi > 4.0; the fitting constant in this case
is 1.14. Comparing with Ostlund [8] and Frey’s [27] ad hoc correlations, which fit observed shock pressure ratios to
the oblique shock pressure ratio (based on inferred shock and deflection angles), we note that their quoted ranges of
validity were in both cases 2.5 � Mi � 4.5.
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Fig. 6. Comparison of free interaction model and model II with separation measurements in rocket engine nozzles.

At higher Mach numbers (Mi � 4), the data suggests that Pi/Pp becomes largely independent of Mi . Although
constancy of Pi/Pp is not inconsistent with separation remaining dominated by the oblique shock, since the asymp-
totic expressions for Pi/Pp at large Mi are, from (9) and (21),

Pi

Pp

∼ sin2(β − θ)

sin2 βM2
i

and
Pi

Pp

∼ k + 1

2k sin2 βM2
i

respectively, then due to an 82% variation in M2
i over 4.0 � Mi � 5.4, the time-average deflection angle, θ , likely

becomes moderately dependent on Mi .

5.2. Separation pressure ratios via the free interaction model

In order to use the free interaction separation criterion in (29), Cf i must be specified. As noted, and based on
Chapman’s [2] observation that Pi/Pp is weakly dependent on Cf i , we assume that Cf i is constant. The assumed
magnitude, Cf i = 0.00245, represents the characteristic value obtained from fitting the free interaction model to
observed time-average shock interaction zone pressure variations, as described in Section 5.4.2 below. In addition,
this value is used in fitting the generalized quasi-one-dimensional flow model to our experimental shock-free flow
measurements, as described in Section 5.4 below.

As shown in Fig. 6, over 1.75 � Mi � 5.5, predicted separation pressure ratios obtained via the free interaction
model are quite similar to those obtained via the second scaling analysis above. Given the reasonable agreement
between model predictions and previous observations, this result simplifies Ostlund’s [8] separation criterion by elim-
inating the need for a priori specification of Pp . Importantly, this result provides further evidence of the applicability
of the free interaction model to separation in nozzles, and moreover, further indicates the physical consistency of the
second scale analysis above.

5.3. Model I and II reconsidered

Having obtained further evidence that separation in overexpanded nozzles is a free interaction problem, we are
confronted with two important questions. First, which approximate model, I or II, provides a more realistic rendering
of shock-induced turbulent boundary layer separation in nozzles? Second, and more broadly, does either model apply
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Fig. 7. Comparison of model II with separation measurements for flow over backward facing steps (Chapman et al. [2]). The fitting constant
equals 1.40.

to the family of free interaction problems encompassed by the free interaction theory? Three observations suggest
that model II provides both an accurate description of separation in nozzles, and a realistic description of separation
in free interaction problems. First, as shown in Fig. 7, it is found that model II provides reasonable predictions of
Chapman’s [2] separation pressure data for supersonic flow over backward facing steps (where we follow Chapman
and assume a constant flow deflection angle of 16◦ and where the fitting constant is 1.41). Model I by contrast, is
not predictive in this case (result not shown). Second, as shown above (Fig. 6), predicted separation pressure ratios
obtained via model II are nearly identical to those obtained via the free interaction model. Third, the qualitative and
quantitative validity of the scaling argument underlying model II is strongly indicated by the fact that the fitting
constant is close to 1 (1.14).

5.4. Results and analysis of present separation measurements

Although the spatial resolution of our pressure measurements is fairly course, normalized time average axial pres-
sure distributions, P/Po, within the nozzle are found to exhibit the classical features of free shock separation (as shown
schematically in Fig. 1): near-isentropic pressure decay from the throat to the nominal incipient separation point, xi ,
rapid pressure rise from Xi through the nominal separation point, xs (where the latter can be determined, for example,
using surface tracer methods [37], and leveling off to a plateau pressure, Pp , in the vicinity of the shock-interaction
zone’s lower-most reach, xp (results not shown).

Considering flow upstream of incipient separation, it is found that the variation in wall pressure, P/Po, can be pre-
dicted with reasonable accuracy using the generalized quasi-one-dimensional model described in Section 3.2 above;
see Fig. 8. The plot shown is obtained for shock-free flow conditions using a least squares fitting procedure in which
the sonic point, xo, and Mach number, M0, immediately downstream of xo serve as fitting parameters; as before, the
friction factor, Cf , is assumed constant and equal to 0.00245. Although the theoretical sonic point can be determined
using the generalized quasi-one-dimensional flow model [32], due to indeterminate frictional losses and heat transfer
between the nozzle chamber and throat, the theoretical expression (incorporating only estimated frictional and area
change effects) leads to unacceptable results. The fitting procedure leads to an estimated sonic point 1.5 cm down-
stream of the throat (x/rt = 0.59) and an initial Mach number of 1.035 (at a position 0.1 cm downstream of the sonic
point).

5.4.1. Separation locations via the generalized quasi-one-dimensional model
Importantly, we find that the generalized quasi-one-dimensional flow model can be used to predict the nominal sep-

aration locations observed in our experiments. Prior to discussing this result, we note that due to the spatial courseness



506 R.G. Keanini, A.M. Brown / European Journal of Mechanics B/Fluids 26 (2007) 494–510
Fig. 8. Comparison of generalized quasi-one-dimensional flow model with observed time-average, shock-free wall pressure variation. Estimated
sonic point 1.5 cm downstream of the throat; estimated initial Mach number (immediately downstream of sonic point) is 1.035; the assumed friction
coefficient is 0.00245; rt = nozzle radius.

of our pressure measurements, and as an alternative to determining Pi/Pp versus Mi , we plot the most-downstream
measurement location at which the boundary layer remains attached to the wall as a function of the nozzle pressure
ratio, NPR (= Po/Pa , where Po is the nozzle chamber pressure); the former is determined using methods outlined
in Dolling and Brusniak [4]. This approach is taken since it provides a unambiguous indication of the uncertainty
associated with typical separation pressure estimates, i.e., those based on spatially course pressure measurements,
while allowing an assessment of the potential utility of the quasi-one-dimensional model in predicting separation line
locations. Indeed, as a means of reducing the uncertainty that characterizes existing separation pressure estimates, we
would argue that future estimates should only incorporate high resolution pressure measurements.

Due to the uncertainty associated with our (spatially course) pressure measurements, we have not included our
Mi and Pi/Pp data in the plots shown in Figs. 4–6. We note, however, that over the limited range of separation
Mach numbers extant in our experiments, 5.0 � Mi � 5.4, estimated separation pressure ratios, Pi/Pp , are essentially
constant and equal to 0.3, consistent with Bloomer’s [20] earlier observations. [In the present study, Pi/Pp is estimated
as the ratio of the pressure at the detected incipient separation point, xi , i.e, the measurement location where wall
pressure begins to rise, to the observed plateau pressure.]

In order to use the generalized quasi-one-dimensional model to predict separation locations, we first express Pi/Pp

as

Pi

Pp

= Pi

Po

Po

Pp

≈ Pi

Po

Po

Pa

= Pi

Po

NPR,

where the peak pressure, Pp , is approximated as the ambient pressure, Pa [8,16,27]. In reality, a small static pressure
rise from Pp to Pa is typically observed, likely reflecting inward acceleration of ambient gas through the recirculation
zone toward the separation point [as depicted, e.g., in Fig. 2]. Since stagnation pressure, Po (= P + ρu2), within the
recirculation zone remains essentially fixed while dynamic pressure, ρu2, increases due to inward acceleration, the
static pressure, P , as detected at the nozzle wall, must decrease from the exit toward the separation point [38].

Next, we express Pi/Po as Pi/Po = G(Mi), where G(Mi) is the value of Pi/Po predicted by the generalized
quasi-one-dimensional model at Mi . The ratio Pi/Pp is then expressed as Pi/Pp = Fo(Mi), where again Fo(Mi) is
the separation pressure ratio predicted by a given separation criterion, e.g., (9), (21), or (29). Combining, we finally
obtain an expression relating the separation Mach number to the nozzle pressure ratio:

NPR = Fo(Mi)
. (31)
G(Mi)
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Fig. 9. Comparison of separation locations predicted by the generalized quasi-one-dimensional flow model with experimental observations.

Thus, for a given NPR, Mi can be determined from (31) and then used to determine the separation location (e.g., via
the quasi-one-dimensional model).

Here, since the range of separation Mach numbers extant in our experiments, 5.0 � Mi � 5.4, lies beyond the range
of validity of models I and II, and beyond that of the free interaction criterion in (29), we assume a constant separation
pressure ratio, Pi/Pp = Fo(Mi) = 0.285; this represents the average of Bloomer’s [20] estimated separation pressure
ratios, indicated in Figs. 4–6, and our estimates described immediately above. The results, shown in Fig. 9, demon-
strate that approximate separation locations can be predicted with reasonable accuracy over a wide range of nozzle
pressure ratios. Note that the uneven appearance of the theoretical plot reflects the use of unevenly spaced, spatially
coarse nozzle geometric data in the integration used to compute G(Mi). Note too that the sonic point, xo (= 0.015 m
downstream of the throat), initial Mach number, Mo (= 1.035), and friction coefficient, Cf (= 0.00245) determined
above are used in the calculations.

A rough estimate of actual time-average separation locations can be obtained as follows: when the maximum NPR
for which the boundary layer remains attached at a given measurement location, xm,i , is approximately equal to the
minimum NPR (for attached flow) at the adjacent downstream measurement location, xm,i+1, the actual separation
point can be assumed to lie near xm,i+1. Thus, based on this rough criterion, it is seen that predicted separation line
locations generally lie near or somewhat upstream of actual. Although not shown, it is found that predictions are sensi-
tive to Mo, but are relatively insensitive to Cf : a 1% variation in Mo leads to approximate 10% variations in predicted
NPR’s while over the range 0.002 � Cf � 0.004, predicted NPR’s (at any given location) vary by less than 15%.
Thus, in application, a reliable method for estimating or measuring Mo is required. From a practical standpoint, this
result suggests that as a preliminary design tool, the generalized quasi-one-dimensional model may provide sufficient
accuracy when assessing separation locations in nozzles. Computationally, the model may likewise provide a simple
alternative or adjunct to complex simulations.

5.4.2. Free interaction model comparison
Observed time-average pressure variations over the shock interaction zone were compared against those predicted

by the free interaction model, with a representative result shown in Fig. 10. The comparison is representative of the
range of nozzle pressure ratios for which a well-defined plateau pressure could be determined, 47 � NPR � 100
[where NPR = 47 is the lowest ratio tested].

The model was fit to the data by treating the length ls = xs − xi , and the friction coefficient, Cf i at xi as fitting
parameters. This contrasts with the approach taken by Ostlund [8] who computed Cf i and used xi and ls as fitting
parameters. In reality and as mentioned, the free interaction model incorporates anywhere from one to four parameters,
xi , ls , Cf i , and p′, any subset of which can be estimated, depending on the amount of experimental information
available. Here, in order to obtain reasonable estimates of xi , we focused on those experiments (described immediately



508 R.G. Keanini, A.M. Brown / European Journal of Mechanics B/Fluids 26 (2007) 494–510
Fig. 10. Comparison of shock interaction zone pressure variation predicted by free interaction model with data (NPR = 47). Here, estimated values
for ls and Cf i are 0.021 m, and 0.00223, respectively.

above) in which the maximum NPR for attached flow at a given measurement location was approximately equal to the
minimum NPR for attached flow at the adjacent downstream measurement site; as noted, this allows one to identify the
downstream measurement site as the approximate separation location. Although this approach is subject to uncertainty,
it was found that corresponding fits were reasonably accurate, as indicated in Fig. 10. By contrast, due to the spatial
coarseness of our measurements (and corresponding paucity of data over the shock interaction zone), fits in which ls
and xi , or Cf i , xi , and ls served as fitting parameters were generally poor. Strictly speaking, and with regard to the
present results and those in Ostlund [8], a rigorous test of the free interaction model’s ability to capture the structure
of the shock interaction zone will require use of well-established model parameters.

6. Summary and conclusions

Time-average, shock-induced, turbulent boundary layer separation has been investigated using a combination of
heuristics, simple analytical models, and experiments, with a focus on separation in overexpanded rocket nozzles.
Two simple scaling analyses are presented in which separation is viewed as reflecting a balance between streamwise
boundary layer inertia and the cross-layer pressure gradient. These lead to two theoretical expressions for the time-
average separation pressure ratio, stated as a function of the inviscid Mach number at the point of incipient separation.
In both models, explicit relationships between the separation pressure ratio (at the wall) and the classical oblique
shock ratio are obtained; the second model, representing a refinement of the first, demonstrates for the first time that
the separation pressure ratio is, to a good approximation, determined by the oblique shock pressure ratio.

Comparisons with available data suggest that the second model provides a fairly realistic picture of time-average
separation in overexpanded nozzles, and more generally, of separation in free interaction problems. In addition, an
examination of Chapman’s [2] free interaction theory shows that nozzle separation pressure ratios predicted by this
model are quite similar to those obtained by the second scale analysis.

Experimentally observed time-average wall pressure distributions upstream of separation can be predicted with
reasonable accuracy using the classical generalized quasi-one-dimensional flow model. Significantly, the model can
be used in combination with suitable boundary layer separation criteria to estimate time-average separation locations.
In addition, preliminary results indicate that the free interaction model is capable of providing accurate descriptions of
the time-average pressure variation over the shock interaction zone, in agreement with Ostlund’s [8] recent findings.

Finally, we note that due to the sensitivity of the separation process to a number of typically coupled features, e.g.,
nozzle shape, gas temperature, interior shock structure, and external conditions, a fair degree of uncertainty will likely
remain associated with separation prediction. However, efforts could be undertaken to both improve repeatability of
experimental measurements and physical understanding of separation. First, as noted in Section 5.4, separation data,
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i.e., wall pressure measurements, can be significantly improved by increasing the spatial resolution of separation zone
measurements. Second, improved models of separation zone flow physics are required. While earlier studies, e.g.,
[2,13,14], along with the present investigation, provide some framework for understanding free shock separation, work
is needed, for example, to understand shock/shock foot interactions with boundary layer vortical structures, dynamic
interactions between the separated boundary layer and separation-inducing shock, and on the potential importance
of upstream information propagation (of downstream conditions) within the subsonic (very-near-wall) portion of the
incipiently separating boundary layer.
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Appendix A

Table 1
Experimental nozzle geometry (all dimensions in cm)

Axial position Nozzle radius Axial position Nozzle radius

0.00000 3.96240 9.98220 2.69494
1.87960 3.96240 10.03300 2.71780
3.45440 3.94462 10.31240 2.83210
7.51840 2.70002 11.2776 3.26898
7.64540 2.65684 12.6492 3.90652
9.09320 2.54000 14.3510 4.66852
9.19480 2.54254 16.2814 5.49402
9.29640 2.54762 18.4658 6.35254
9.37260 2.55524 20.8788 7.22122
9.44880 2.56286 23.5204 8.08482
9.49960 2.57302 26.4160 8.93572
9.57580 2.58572 29.5402 9.76630
9.65200 2.60096 32.8930 10.56894
9.70280 2.61366 36.4490 11.3411
9.75360 2.62128 40.2590 12.0777
9.80440 2.63652 44.2976 12.7787
9.85520 2.65176 48.5648 13.4366
9.90600 2.66700 53.0352 14.0513
9.95680 2.68224 55.3466 14.3434
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