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Abstract A method for enhancing the stability of
parabolic inverse heat conduction problems (IHCP) is
presented. The investigation extends recent work on
non-iterative finite element-based IHCP algorithms
which, following Beck’s two-step approach, first derives a
discretized standard form equation relating the instan-
taneous global temperature and surface heat flux vectors,
and then formulates a least squares-based linear matrix
normal equation in the unknown flux. In the present
study, the non-iterative IHCP algorithm is stabilized
using a modified form of Beck’s sequential function
specification scheme in which: (i) inverse solution time
steps, Dt; are set larger than the data sample rate, Ds; and
(ii) future temperatures are obtained at intervals equal to
Ds: These modifications, contrasting with the standard
approach in which the computational, experimental,
and future time intervals are all set equal, are designed
respectively to allow for diffusive time lag (under the
typical circumstance where Ds is smaller than, or on the
order of the characteristic thermal diffusion time scale),
and to improve the temporal resolution and accuracy of
the inverse solution. Based on validation tests using three
benchmark problems, the principle findings of the study
are as follows: (i) under dynamic surface heating condi-
tions, the modified and standard methods provide com-
parable levels of early-time resolution; however, the
modified technique is not subject to over-damped esti-
mation (as characteristic of the standard scheme) and
provides improved error suppression rates, (ii) the pres-

ent method provides superior performance relative to the
standard approach when subjected to data truncation
and thermal measurement error, and (iii) in the nonlinear
test problem considered, both approaches provide com-
parable levels of performance. Following validation, the
technique is applied to a quenching experiment and
estimated heat flux histories are compared against
available analytical and experimental results.
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Nomenclature

a temperature coefficient in linear expansions
for k and c;Test Case 3

A; B; C; D coefficient matrices in standard form equa-
tion

c specific heat
cðmÞ global vector produced by condensation,

evaluated at the mth future time
f global force vector
fðmÞ global force vector evaluated at the mth

future time
h; hnþ1 estimated instantaneous convective heat

transfer coefficient
k thermal conductivity
K global stiffness matrix
L thickness of test specimen; depth of

embedded temperature probe
M global mass matrix
Ni ith interpolation function
n surface unit normal
qc magnitude of impulsively imposed heat flux

(Test Case 1)
qþ dimensionless estimated surface heat flux

ð¼ qn=qcÞ
q global vector of surface heat fluxes

~qnþ1 heat flux parameter vector evaluated at tnþ1
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r number of future times used in the stan-
dard method ½ðr � 1Þb ¼ R�

R number of future times used in present
method

Snþ1 instantaneous least square error norm (at
tnþ1Þ

t time
tþ dimensionless time ð¼ at=L2Þ
dt computational time step (for inverse solu-

tion)
dtþ dimensionless computational time step

ð¼ adt=L2Þ
dtf future time step size
tðmÞ the mth future time
UðmÞ global matrix in standard form equation

ð¼ ½Mþ DtðmÞK��1Þ
x x-coordinate
xþ dimensionless x-coordinate ð¼ x=LÞ
u Kirchoff transformation variable, Test

Case 3
X position vector
Xðnþ1Þ sensitivity matrix, evaluated at tnþ1
~YðmÞ vector of measured temperatures, obtained

at future time tðmÞ
a thermal diffusivity
b time-scale multiplication factor ð¼ Dt=DsÞ
C1; C2 surface regions where temperature and heat

flux boundary conditions are applied,
respectively

Ce finite element boundary
h computed temperature field
h1 ambient temperature
ho initial temperature distribution
~hðmÞ vector of computed measurement site

temperatures, obtained at future time tðmÞ
q density
Ds sample time step
Dsþ dimensionless sample time step ð¼ aDs=L2Þ
sD thermal diffusion time scale between

surface and embedded probe

Superscripts and overhead marks

ðmÞ future time index
n; nþ 1 time indices
þ dimensionless quantity
~� reduced global matrix

Subscripts

o property evaluated at reference temperature ho

1 Introduction

The classical inverse heat conduction problem (IHCP)
uses one or more temperature measurements taken from
the interior of a body to estimate an unknown, typically

time-varying surface heat flux distribution. The problem
arises in a variety of applications, some of the more
interesting of which are highlighted by Beck et al. [1] and
Özisik and Orlande [2]. Over approximately 40 years of
development, numerous methods have been proposed
for treating the IHCP; comprehensive reviews of the
literature can be found in Beck et al. [1], Özisik and
Orlande [2], Tikhonov and Arsenin [3], Kurpisz and
Nowak [4], Hensel [5], Murio [6], and Alifanov [7].
Applications, illustrating a variety of methods, are pre-
sented in Zabaras et al. [8], Delaunay et al. [9], Wood-
bury et al. [10], and Orlande at al. [11].

This article continues and extends recent work [12] on
non-iterative methods for the IHCP. The technique
developed in the first study, applicable to a broad class
of parabolic inverse heat transfer problems in which a
surface heat flux (or temperature) history is sequentially
estimated given a known initial thermal state and limited
subsequent thermal measurements, was guided by a
generic, two-part strategy first described by Beck et al.
[1]. In Beck’s approach, the direct heat transfer model
(describing conductive heat transfer in the body of
interest) is used to first derive a linear (or in nonlinear
problems, a quasilinear), discretized system of equations
relating the instantaneous global temperature vector,
hnþ1; to the instantaneous vector of unknown surface
heat fluxes qnþ1: The resultant standard form equation,
which can be stated in generic form as

A _hþ Bh ¼ CqþD ð1Þ

can in principle be derived for sequential finite element,
finite difference, finite volume, and boundary element-
based inverse methods (where the latter can only be used
in linear problems), and where the system matrices A; B;
C; and D are determined by the discretization method
used. Once the standard form equation is obtained, the
second step in Beck’s approach requires explicit least
squares-based minimization of an error measure, S;
between computed and measured temperatures. Mini-
mization then leads directly to a linear (or quasilinear)
matrix normal equation in the unknown instantaneous
surface flux distribution [1].

Although Beck’s method of parabolizing the inverse
problem via the standard form and matrix normal
equations is well-studied, and while Beck et al. [1] have
presented a specialized treatment appropriate to linear,
one-dimensional problems in planar geometries
(encompassing most of the discretization methods
mentioned above), to the authors’ knowledge, a detailed
implementation appropriate to multidimensional non-
linear problems had not been reported prior the work in
Ling et al. [12].

The advantages associated with Beck’s approach are
numerous:

i) The method is non-iterative, transforming the in-
verse problem into a hybrid initial value problem in
which the initial condition is known and the
instantaneous surface flux boundary condition is
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sequentially estimated via the matrix normal equa-
tion, based on measured data. The method thus
offers an efficient alternative to the relatively
expensive iterative approaches that presently dom-
inate the field (see, e.g., [2,4]).

ii) The sensitivity matrix, Xðnþ1Þ; which plays a central
role in many IHCP solution algorithms [1,2,4], can
be explicitly determined, where in the finite element-
based approach, for example, matrix elements of
Xðnþ1Þ are formed using elements of the global mass
and stiffness matrices as well as area integrals
associated with the global force vector. (See below.)
This feature, which follows as a consequence of
having obtained an explicit standard form equation,
circumvents expensive solution of boundary value
problems governing Xðnþ1Þ or numerical evaluation
of the derivatives comprising Xðnþ1Þ [2].

iii) As described by Beck et al. [1], the method can
incorporate any of the discretization schemes men-
tioned above.

iv) As also noted by Beck [1] and as demonstrated by
Ling et al. [12], the method can be formulated for
application to nonlinear, multidimensional inverse
problems. [Note, the method developed in [12] is a
nonlinear, multidimensional formulation, but was
applied to a linear, one-dimensional benchmark
problem and to a nonlinear, one-dimensional
experimental problem].

The purpose of the present study is to investigate a simple
method for stabilizing solutions of parabolic inverse heat
conduction problems. In particular, a modified form of
Beck’s sequential function specification method is pro-
posed in which computational, experimental, and future
time intervals are allowed to differ. The investigation is
motivated by three principle questions.

(i) Preliminary results reported by Keanini [13] suggest
that choosing the computational time step, Dt; lar-
ger than the sample interval, Ds; improves inverse
solution stability. Under the typical circumstance
where the sample interval is shorter than the char-
acteristic thermal diffusion time scale, sD [between
the heated surface and the thermal measurement
location(s)], it is clear that due to diffusional time
lag, Dt should be chosen larger than Ds:While Beck
et al. [1] have demonstrated the stabilizing effects of
increased computational time step size relative to sD
(using equal computational, sample, and future time
step sizes), a detailed examination of the potential
stabilizing effects of increased computational step
size relative to sample interval size apparently has
not been undertaken.

(ii) Investigators using the sequential function specifi-
cation method have, without apparent exception,
obtained future temperatures at time intervals equal
to the computational time step, Dt: Based on the
simple notion that increased thermal information
can be obtained (and solution stability thus im-
proved) by incorporating future temperatures at the

typically smaller experimental sample interval, we
will also investigate the potentially stabilizing effect
of this approach.

iii) The method developed by Ling et al. [12], while
providing a general finite element-based formula-
tion of Beck’s two-step strategy, in effect used exact
matching of computed and measured temperatures.
Since exact matching is prone to solution instability
[1,4], a simple, non-iterative, stand-alone method
for enhancing solution stability was sought. Al-
though Tikhonov regularization [3] superficially
meets these criteria, the method in fact requires a
priori specification of both the regularization
parameter and the form of the regularization term.
By contrast, it appears that a modified function
specification approach in which future temperatures
are obtained at the relatively short experimental
sample interval provides an objective, physically-
based alternative to Tikhonov regularization. Spe-
cifically, the standard assumption [1] that the sur-
face flux remains constant over the total future time
interval, RDtf ; is likely well met for small to mod-
erate R since on this time scale (which is on the
order of the measurements’ temporal resolution),
the detectable flux does remain essentially constant.
(Here, R is the number of future times and Dtf is
the future time interval).

In overview, the FEM-based algorithm developed in
[12] is first briefly described, with formulation of the
standard form equation highlighted; a description of
the solution, experimental, and future time intervals is
given in the course of this development. Using the
proposed modified function specification method, the
associated matrix normal equation is then derived. The
method is then validated against three well known
example problems, designed respectively to test the
ability of the technique to reconstruct rapidly changing
surface fluxes, adapt to data truncation error and
measurement error, and to solve nonlinear problems.
Once validated, the technique is used to investigate
surface heat transfer during experimental quenching of
circular cylinders.

2 Inverse method formulation

2.1 Standard form equation

The initial-boundary value problem governing conduc-
tive heat transfer in the region of interest, X; is given by:

r � krhð Þ ¼ qc
oh
ot
; ð2Þ

subject to the boundary conditions

h ¼ h1 on C1 ð3Þ
and

krh � n ¼ q on C2; ð4Þ

119



where X is bounded by C ¼ C1 [ C2; and where C1 is the
portion of the boundary subject to known temperature
and/or heat flux conditions, and C2 is the portion of the
boundary on which thermal conditions are unknown.
For simplicity, we assume that only temperatures are
specified on C1: The initial condition is

hðX; 0Þ ¼ h0ðXÞ; ð5Þ
where X ¼ ½x; y; z�. In general, q, c and k are tempera-
ture-dependent, while q is dependent on time and space.

The direct problem defined by (2)– (5) is solved using
the Galerkin finite element method, where the resulting
system of equations is given by

Mþ DtKð Þhnþ1 ¼Mhn þ Dtf nþ1; ð6Þ
and where components of the element capacity and
stiffness matrices are given by

Me
ij ¼

Z
Xe

qcNiNjdX ð7Þ

Ke
ij ¼

Z
Xe

kNi;kNj;kdX: ð8Þ

Note that Xe is the element area, Ni is a finite element
interpolation function, and summation over k (=1, 2, 3
for three-dimensional problems) is implied. Further,
Dt ¼ tnþ1 � tn denotes the computational time step.

Here, the implicit, one-step, Euler backward-difference
method is employed. It is important to note that in non-
linear problems where temperature variations are large
enough to induce significant thermophysical property
variations, quasilinearization [1] is used to evaluateM and
K. Thus, the magnitudes of q, c , and k at the current time
step are evaluated using the temperature solution, hn,
from the previous time step. In all cases, superscripts onM
and K are suppressed for clarity. Components of the ele-
ment force vector are given by

f e
i ¼

Z
Ce

NiqdC; ð9Þ

where Ce is the element boundary and where the time
index has again been suppressed.

2.1.1 Computational, experimental, and future time steps

Prior to proceeding, it is necessary to define the various
time steps and intervals that will be used in developing
the standard form equation and inverse algorithm. In
the development to follow, inverse solutions will be
obtained at discrete times tnþ1 ¼ ðnþ 1ÞDt; where again
Dt is the computational time step. In order to circumvent
solution instability, the computational time step,
Dt ¼ tnþ1 � tn, is chosen to be larger than the experi-
mental sample interval, Ds:

Dt ¼ bDs; ð10Þ
where b is a positive integer. As mentioned, this choice,
dictated by the fact that Ds is typically smaller than the

characteristic thermal diffusion time scale, sD ¼ L2=a;
allows for diffusional time lag between the surface C2

and the sensors located at a characteristic depth L. [A
minimum bound on the magnification factor, b; can be
estimated by first recognizing that the computational
time step must, at minimum, be on the order of sD; i.e.,
Dtjmin � sD: Thus, bmin ¼ Dtjmin=Ds � sD=Ds; choosing
values of b larger than bmin ensures that the computa-
tional time step is a larger-than-unity multiplier of the
diffusion time scale].

Considering formation of the instantaneous least
squares norm and subsequent formulation of the matrix
normal equation (see Sect. 2.2 below), sets of measured
and computed temperatures will be obtained at the
current time, tnþ1ð¼ tð0ÞÞ, and at R subsequent or future
times, tð1Þ; tð2Þ; . . . ; tðRÞ, where tðmÞ is related to tnþ1 by

tðmÞ ¼ tnþ1 þ mDs; ð11Þ
[As a point of comparison, the mth future temperature in
the standard approach is given by tðmÞ ¼ tnþ1 þ mDt:
Note too that while all of the data used in an inverse
solution procedure is typically obtained prior to
attempting a solution, in the special case where real-time
or near real-time inverse solutions are sought, the
computed solution at tnþ1 must lag data acquisition by a
time interval determined by the number of future mea-
sured temperatures used].

An illustration of the various time scales and intervals
to be used is given in Fig. 1 for the case where b ¼ 2 and
R ¼ 4.

2.1.2 Standard form equation

We now generalize our earlier approach [12] and express

the global force vector at future time tðmÞ as

fðmÞ ¼ ~D~qnþ1 þ cðmÞ; ð12Þ
where ~qnþ1 is the vector of parameters describing the
instantaneous global surface heat flux vector qnþ1 on C2;
cðmÞ is a vector produced by condensation (as determined
by the primary boundary conditions on C1Þ; and where
elements of ~D, given by

n+1 n+2 n+3 n+4n

(0) (1) (2) (3) (4)

Experiment

Computation

Future

Time

Fig. 1 An illustration of the time steps
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~DPk ¼
of ðmÞP

o~qnþ1
k

; ð13Þ

are constants determined by the finite element discreti-
zation. See [12] for further details. Eq. (12) is of central
importance in our development since it allows derivation
of the linear matrix normal equation in ~qnþ1: Indeed, Eq.
(12) represents the finite element embodiment of Beck’s
function specification method [1] where, in the present
case, the unknown flux at R future times is temporarily set
equal to the flux at tnþ1. Note, in Eq. (13) that the upper
case subscript P refers to a global node number, while the
lower case subscript k refers to the local index over the K
members of ~qnþ1. (See [12] for further details.)

The explicit, FEM-based standard form equation,
appropriate for use in the modified function specifica-
tion scheme, is finally obtained by inverting the gov-
erning Eq. (6), i.e.,

hðmÞ ¼ UðmÞMhn þ DtðmÞUðmÞfðmÞ ð14Þ
where UðmÞ ¼ ½Mþ DtðmÞK��1, fðmÞ is given by (12), and
where DtðmÞ ¼ tðmÞ � tn. In our case, DtðmÞ ¼ Dt þ mDs.

2.2 Matrix normal equation

Having obtained the standard form equation, we can
now derive the associated matrix normal equation. The
unknown instantaneous flux distribution, parameterized
by the vector ~qnþ1, is determined by first minimizing an
instantaneous least squares norm, Snþ1, with respect to
~qnþ1; where Snþ1 is given by

Snþ1 ¼
XR

m¼0

~Y
ðmÞ � ~h

ðmÞ� �T
~Y
ðmÞ � ~hðmÞ

� �
: ð15Þ

Here, ~Y
ðmÞ

and ~hðmÞ denote respectively, sets of measured
and computed temperatures, obtained at corresponding
locations within the body, at time tðmÞ: The set of com-
puted measurement site temperatures,

~
hðmÞ; follow from

(14):

~hðmÞ ¼ ~U
ðmÞ

Mhn þ DtðmÞ ~U
ðmÞ

fðmÞ ð16Þ
where elements of ~U

ðmÞ
are related to those in UðmÞ by

~U ðmÞiP ¼ U ðmÞGP , and where the local index i (spanning the I
measurement sites) maps to the corresponding global
node G. Note that the reduced matrix ~U is of dimension
I � N . We again emphasize that although ~Y

ðmÞ
and ~hðmÞ

are generally obtained at time intervals equal to Dt [1],
we obtain these sets at the shorter experimental mea-
surement interval, Ds:

Minimization of Eq. (15) with respect to the members
of ~qnþ1 leads to

XR

m¼0
½~XðmÞ�T ½~YðmÞ � ~hðmÞ� ¼ 0 ð17Þ

where ~X
ðmÞ

is the sensitivity matrix of dimension I � K,
and where elements of ~X

ðmÞ
, given by

~X
ðmÞ
ik ¼

o~hðmÞi

o~qnþ1
k

; ð18Þ

represent the temperature response at measurement site i
and time tðmÞ with respect to the kth instantaneous heat
flux parameter on C2.

Given (18), (12) and (16), we first express the sensi-
tivity matrix, ~X ðmÞ, in explicit form:

~X ðmÞ ¼ DtðmÞ ~U
ðmÞ ~D ð19Þ

Finally, introducing (16) and (19) into (17), we obtain
the linear matrix normal equation in ~qnþ1:

XR

m¼0

~X
ðmÞT ~X

ðmÞ
 !

~q
nþ1 þ

XR

m¼0

~X
ðmÞT

� ~U
ðmÞ

Mhn þ gðmÞ � ~Y
ðmÞ� �
¼ 0; ð20Þ

where gðmÞ ¼ DtðmÞ ~U
ðmÞ

cðmÞ. This important result,
extending the method developed in [12], represents the
finite element-based matrix normal equation, stabilized
via the modified function specification method (where the
version in [12] is obtained by setting R ¼ 0 in Eq. (20)).

2.3 Inverse algorithm

Based on the preceding development, an algorithm for
the inverse solution is proposed as shown in Table 1.

Refer to [12] for further discussion and a detailed
illustration of the basic algorithm.

3 Validation tests

In this section, the above developed inverse method is
validated against three example problems originally
proposed by Beck [1, 14,15]. In all three problems, a flat
plate heated at x ¼ 0 and insulated at x ¼ L is consid-
ered. In the first problem, a surface heat flux is imposed
at x ¼ 0 and t ¼ 0; and is then maintained constant in
time. In the second case, the heat-flux is assumed to vary
with time in a triangular fashion. The third case is
similar to the first with the exception that thermal con-
ductivity and specific heat are taken to be functions of
temperature, thus making the problem nonlinear.

Exact solutions for all three problems are used to
simulate experimental data. The performance of the
proposed algorithm is then examined, and the results
compared against those predicted by Beck’s analyses.
For purposes of comparison with Beck’s results, we use

Table 1 Proposed inverse algorithm

Given hn; ~Y
ðmÞ
; M; K; and cðmÞ:

1. determine ~qnþ1 using Eq. (20);

2. calculate fnþ1ð¼ fð0ÞÞ using Eq. (12);

3. determine hnþ1ð¼ hð0ÞÞ from Eq. (14);
4. increment the time index and return tostep (1).
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nondimensional quantities in the discussion below. It
should be noted that r, denoting the number of future
times in Beck’s work, is related to R, the number of
future times in the present work, via the relation

ðr � 1Þb ¼ R ð21Þ
In other words, the time difference between the largest
future time [which equals RDs here and ðr � 1ÞDt ¼
ðr � 1ÞbDs in Beck’s work] and the current time, tnþ1; is
the same in both approaches. In the comparisons to be
described, the values of r reported by Beck will thus
determine a corresponding value of R:

3.1 Case 1: Step change in surface heat flux at x ¼ 0

The first case is designed to test the ability of the inverse
method to reconstruct rapid changes in surface heat flux.
Consider the flat plate shown in Fig. 2, where the plate,
insulated at x ¼ L; is subjected to a step-up in heat-flux
from 0 to qc; at x ¼ 0; t ¼ 0:

The exact solution in nondimensional terms is given
by [1]:

hþðxþ; tþÞ ¼ tþ þ 1

3
� xþ þ 1

2
ðxþÞ2

� 2

p2

X1
m¼1

1

m2
e�m2p2tþ cosðmpxþÞ

ð22Þ

where

hþ ¼ h� h0
qcL=k

; tþ ¼ at
L2
; xþ ¼ x

L
:

Here, h0 is the initial temperature, and k and a are the
thermal conductivity and thermal diffusivity, respec-
tively. Simulated noise-free experimental temperature
data is generated from Eq. (22) at xþ ¼ 1 (corresponding
to the insulated surface), at time intervals Dsþ ¼ 0:01:
The nondimensional surface heat flux q̂þ ¼ qn=qc; is
then estimated (at x ¼ 0Þ using two different computa-
tional time steps, Dtþ ¼ 0:05 and ¼ 0:5, with the corre-
sponding results shown in Figs. 3 and 4. For purposes of
comparison, the results obtained by Beck et al. [1] using
the standard function specification method in combi-
nation with a Duhamel integral solution of the direct
problem are also shown.

Considering the results shown in Figs. 3 and 4, a
number of observations can be made. Examining first
the results obtained by exact matching of computed and
experimental temperatures (R=0; r=1) [1], we see that
the estimated flux obtained by the present method
exhibits a large initial overshoot whose magnitude de-
creases with increasing step size, Dtþ: This feature can be
explained as follows. When Dtþ is small, the dimensional
time increment Dt is much smaller than the diffusive time
scale ðsD ¼ L2=aÞ; the initial temperature response at
tþ ¼ Dtþ and xþ ¼ 1 is thus suppressed and the corre-
sponding predicted heat flux, qþðDtþÞ; underestimated.
At the next time step ðtþ ¼ 2DtþÞ; however, the tem-
perature response (at xþ ¼ 1Þ increases, so that due to
both energy conservation and the underestimated flux at
tþ ¼ Dtþ; the corresponding flux estimate overshoots the
actual value. This process of energy conservation-driven
compensation for under- and over-estimated surface
heat fluxes continues until the estimated flux begins to
approach the actual value. The magnitude of the over-
shoot decreases with increasing Dtþ due to an increasing
initial temperature response at tþ ¼ Dtþ and xþ ¼ 1. In
contrast, the solution obtained by the standard function
specification approach (using Dtþ ¼ 0:05Þ becomes un-
bounded soon after the initiation of heating. As dis-
cussed by Beck et al. [1], this result reflects a
combination of solution sensitivity to exact matchingFig. 2 Square insulated plate subjected to a step-up in heat-flux
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(a) Results from the present method (b) Beck's function specification method

Fig. 3 Calculated surface heat
flux for constant qc input to
a plate. Exact temperature data,
Dtþ ¼ 0:05, b ¼ 5
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between the solution and data, and use of a time step
that is too small relative to sD. Note that Beck’s single
future time step solution (r=1), which in reality corre-
sponds to Stolz’s solution [1, 16], stabilizes at the larger
time step, Dtþ ¼ 0:5.

The effect of adding future temperatures is apparent
in Figs. 3 and 4 - both sets of solutions become smoother
as R and r are increased. Notice, however, that while the
solutions obtained by the present method rapidly ap-
proach the exact solution for both time steps and at all
values of R; Beck’s solutions, particularly those using
Dtþ ¼ 0:5; exhibit early-time damping, an effect that
becomes increasingly pronounced and extended as r in-
creases. [Here, damping refers to estimates that remain
less than the actual value.] Scale analysis of the matrix
normal Eq. (20), expressed in the abbreviated form
A~q

nþ1 ¼ b; reveals the cause of overdamping: at early
fixed times, the ratio kbk=kAk; indicating the approxi-
mate magnitude of ~qnþ1; becomes smaller with increas-
ing r: Importantly, based on the results in Figs. 3 and 4,
we observe that the modified function specification
method provides improved stability and reduced
over-damping compared to the standard approach. Note
finally the intuitively reasonable result that for both
methods, early-time resolution of the unknown surface
flux decreases with increasing time step size, Dtþ:

3.2 Case 2: Triangular surface heat flux at x ¼ 0

The second test case, designed to assess the inverse
method’s performance when subjected to data truncation
error [14] and random measurement error [1], is shown in
Fig. 5. The insulated plate is subjected to a triangular heat
flux at xþ ¼ 0; with the exact solution given in [1]. Tem-
peratures obtained from the solution at the insulated end
at nondimensional time intervals of 0:02 are again taken
to be the exact experimental temperature data.

Considering first the effects of data truncation error,
we follow Beck [14] and simulate this type of error by
truncating the exact solution after the third decimal
place. Specifically, using the measurement time interval
Dsþ ¼ 0:02; we set the nondimensional temperature at
xþ ¼ 1 equal to 0:000 for tþ ¼ 0:02 � i; i ¼ 1; 2; . . . ; 7;
and equal to 0:001 for tþ ¼ 0:16. Exact temperatures at
subsequent time intervals are then truncated to three
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(a) The Present Method (b) Beck's function specification method

Fig. 4 Calculated surface heat
flux for constant qc input to
a plate. Exact temperature data,
Dtþ ¼ 0:5, b ¼ 50

Fig. 5 Square plate subjected to a constant heat-flux and insulated at
the other end
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Fig. 6 Calculated heat flux for case 2 with measurement errors
introduced by truncation of the exact temperatures. Dsþ ¼ 0:02
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decimal places. Compared with actual temperatures,
experimental temperatures for tþ � 0:16 are in error by
as much as 100%.

The surface heat flux at xþ ¼ 0; predicted by the
present method and also by Beck’s analysis [14], are
shown in Fig. 6. The results correspond to the case when
two future temperatures are used ðR ¼ r ¼ 2Þ; with
Dtþ ¼ 0:04. [For convenience, we follow Beck [1] and
refer to current temperatures, corresponding to r ¼ 1, as
future temperatures]. It is clear from the figure that the
predictions generated by the present approach agree well
with the exact solution, whereas Beck’s solution ðr ¼ 2Þ
exhibits significant instability. Predictions obtained by
the present technique at a smaller computational time
step, Dtþ ¼ 0:02, are also shown. For this time step,
oscillations in the estimated flux become more pro-
nounced, though still not as large as those accompany-
ing Beck’s solution. It is thus apparent that for this test
case, data truncation errors do not significantly affect
the algorithm’s ability to accurately reconstruct the
prescribed surface flux.

Computed surface temperatures at xþ ¼ 0:0; corre-
sponding to the estimated fluxes in Fig. 6 (where
R ¼ r ¼ 2Þ; are shown in Fig. 7. Again, results obtained
by the present method are in good agreement with the
exact solution, and significantly less oscillatory than the
predictions generated by the standard approach.

Although not shown, it is worth noting that the solu-
tion obtained by the presentmethod using exactmatching
ðDtþ ¼ 0:04; R ¼ 0Þ remains bounded, though oscilla-
tory. However, the oscillations remain smaller than those
accompanying Beck’s two-future-time solution ðr ¼ 2;
Dtþ ¼ 0:04Þ. By contrast, the single-future-time solution
ðr ¼ 1Þ becomes unbounded for Dtþ ¼ 0:04.

Considering next the effects of measurement uncer-
tainty, we follow Beck et al. [1] and use the same sim-
ulated random temperature signal that was used in their
tests. In particular, simulated noisy temperature mea-
surements, generated by adding a normally distributed
random component to the exact solution at xþ ¼ 1:0
ðDtþ ¼ 0:06Þ; are taken directly from Table 5.3 in [1].
The resulting surface heat flux estimates, corresponding
to Dtþ ¼ 0:06; R ¼ 2; and r ¼ 3; are shown in Fig. 8.
Close examination of the figure reveals that the solution
obtained by the modified method is less oscillatory and
somewhat more accurate than that obtained by the
standard approach, particularly near the peak flux.

3.3 Case 3: Temperature dependent thermal properties

Here we consider a nonlinear problem studied by Beck
et al. in [15]. As in the first example, a flat-plate,
insulated at xþ ¼ 1; is subjected to a step-up in heat flux
at tþ ¼ 0. However, the thermal conductivity and spe-
cific heat are now assumed to depend linearly on tem-
perature according to

k ¼ k0 1þ ahð Þ c ¼ c0 1þ ahð Þ: ð23Þ
where a is a constant, and k0 and c0 are the thermal
conductivity and specific heat, respectively (evaluated at
a reference temperature, h0Þ; as given in [15],
ko ¼ 74:24 Wm�1K�1; co ¼ 447 Jkg�1K�1; and a ¼
0:00086 K�1; representative of Armco iron at
ho ¼ 300 K: Note, due to the use of the same tempera-
ture coefficient, a; in both property relationships in Eq.
(24), these expressions are idealizations simply designed
to capture the nonlinear effect produced by temperature-
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dependent thermal properties [15]. Note too that there is
no pre-specified limit on the temperature h; as indicated
by the exact solution to the corresponding linear prob-
lem, Eq. (22), and more to the point, as dictated by the
physics of the problem, the temperature will continue
rise with time, at least until the melting temperature is
reached.

Using the Kirchoff transformation, defined by

uðxþ; tþÞ ¼
Z h

0

ð1þ ah0Þdh0 ¼ hþ a
h2

2
; ð24Þ

the transient nonlinear heat conduction problem can be
recast into a linear problem in the variable u [15]. The
linear problem has a known exact solution that is
identical to Eq. (22), with hþ replaced by uðxþ; tþÞ.

The simulated measured temperature data is obtained
at xþ ¼ 0:1 from the exact solution using Dsþ ¼ 1:0.
Note that, unlike the previous two test problems,
the sensor is located in the interior of the plate.
The dimensionless time step is thus based on the dis-
tance, xs; from the exposed surface to the sensor loca-
tion; that is, Dsþ ¼ aDs=x2s .

In Fig. 9, the relative error between the estimated and
actual heat flux is plotted against the time index. Again,
an overshoot is seen at the beginning of the calculation.
The solution then quickly converges to the exact value of
unity, and for a time index up to 1000 (the largest tes-
ted), remains unchanged. As in example 1, it is also
found that the initial overshoot can be considerably
suppressed if a large number of future temperatures are
used. Results obtained by the standard function speci-
fication method for a time index greater than 20 are not
available. However, for a time index less than 20, the

relative errors for both methods are found to be of the
same order.

4 Application to quenching problems

4.1 Experiments

Estimation of the surface heat flux during quenching of
solid bodies represents a challenging task for inverse
heat transfer algorithms. The nature of the heat transfer
process at the interface between the quenchant and the
part being quenched is extremely complex. For sim-
plicity, the process can be conceptualized as occurring in
three stages. In the initial stage when the part tempera-
ture is extremely high, a vapor blanket rapidly forms
around the part. Depending on the part size, quenchant
properties, latent heat of vaporization and ambient
pressure, the blanket can persist or quickly collapse.
Once the blanket collapses, heterogeneous, turbulent
two-phase (nucleate boiling) heat transfer sets in (stage
2), and eventually gives way to single-phase natural
convection (stage 3). The cumulative effect of these
processes is a surface convective heat transfer coefficient
that varies in a complex fashion with time.

In this section, we re-analyze the experiment reported
in [12] where a metallic cylinder was quenched in oil and
the associated interior temperature was measured in
time. In particular, the proposed inverse method is used
to estimate the time-varying surface heat flux from the
cylinder. Surface heat flux predictions are then com-
pared with analytical results due to Burggraf [17] and, as
in [12], associated heat transfer coefficients are compared
against those estimated by Bodin et al. [18] in an inverse
analysis of a similar experiment.

The quenching experiments were performed using a
Drayton Quenchalyzer [19]. As described in [12], an
Inconel 600 metal cylinder, having a thermocouple at its
geometric center, was heated in a furnace to a prespec-
ified temperature, h0 ¼ 850oC. See Fig. 10. Once a
steady temperature was achieved, the cylinder was
quickly transferred to a stagnant oil bath at h1 ¼ 40oC.
Throughout, transient temperature changes at the center
of the probe were acquired and stored by a computerized
data acquisition system, sampling at a rate of 8 Hz
(Ds ¼ 0:125), for a period of 60 seconds. [Note that the
thermal diffusion time scale, sD; between the surface and
thermocouple was approximately 9.3 s.]
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Fig. 9 Surface heat flux using exact temperature data when the
material properties depend on temperature. Dsþ ¼ 1:0
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Fig. 10 A schematic of the probe used in experiments. All dimensions
are in mm
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4.2 Burggraf’s analysis

Since the ratio of the probe’s half length to its radius is
around 5, it suffices to model the probe as a long solid
cylinder and to neglect the influence of end heat fluxes.
Thus, the problem reduces to finding the instantaneous
surface heat flux for an infinitely long solid cylinder,
where the temperature variation is only along the radius.
Burggraf [17] presented one of the first analytic solutions
to this problem using a series solution to the linear in-
verse problem. According to his solution, the heat flux is
given by

q ¼ k
X1
m¼1

mR2m�1
o

22m�1 m!ð Þ2am

dmY
dtm

: ð26Þ

where Y is the surface temperature, and Ro is the radius
of the cylinder. For computational purposes, the series is
truncated at m ¼ 5; derivatives are replaced by centered
differences, and the time-varying temperature at the
center of the cylinder is set equal to the experimentally
observed temperature.

4.3 Results from the present method

Again, due to the probe’s slenderness and relatively
compact size, quenching is modeled as a one-dimensional
axisymmetric problem. Fig. 11 shows the estimated sur-
face heat flux when b ¼ 1 and R ¼ 2 ðDt ¼ Ds ¼ 0:125sÞ:
Also shown is the result from Burggraf’s analysis where
again, Dt ¼ 0:125 s. It is seen from the figure that surface
heat flux estimates from both methods are in excellent
agreement.

Note that flux estimates become unbounded when no
future temperatures ðR ¼ 0Þ are used (results not shown);

the results presented correspond to the least stable solu-
tion obtained. It is also observed that stable solutions
nearly identical to those given in Fig. 11 are obtained
when b ¼ 2 and b ¼ 5; with R ¼ 1 (results not shown).
Due to the highly transient nature of surface heat transfer,
use of more than one future temperature for b > 1 is
found to produce solutions which lag somewhat behind
the actual flux. Thus, a certain amount of trial and error
may be required when determining R; particularly in
strongly time-dependent problems.

The oscillations produced by the present method may
in part reflect amplification of small amplitude, high
frequency noise components in the measured tempera-
ture signal (note, these are not resolved in Fig. 12). As
illustrated for example by Kurpisz and Nowak [4],
estimated time rates of change of the surface flux vector
qnþ1 are subject to large amplitude variations due to time
differentiation of the low amplitude, high frequency
random component in the measured signal. An addi-
tional factor likely underlying the oscillatory flux esti-
mates is associated with the fact that the computational
time step, Dt; equals the experimental sample interval,
Ds: As indicated by the results from the first test case
above, Dt should be chosen larger than Ds:

Interestingly, the oscillating flux does not affect the
accuracy of the estimated temperature at the center of
the probe. As shown in Fig. 12, the estimated tempera-
ture history tracks the experimental history throughout.
Due to the fact that both Ds and Dt are much shorter
than the thermal diffusion time scale, high frequency
components in both the actual and estimated surface
heat flux are smeared by diffusion. This results in
smooth experimental and predicted temperature varia-
tions at the center (at least to the resolution of the plot).
Comparing the temperature history obtained by the
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present approach with that predicted via the non-
stabilized method in [12], it is found that in the present
case the maximum relative error between predicted and
experimental temperatures is approximately 0:4%;
roughly an order of magnitude smaller than the 3 to 5%
maximum error observed in [12].

Heat transfer coefficients associated with the flux
estimates in Fig. 11 are shown in Fig. 13 ðb ¼ 1; R ¼ 2Þ.
Here,

hnþ1 ¼ qnþ1

h1 � hnþ1=2
N

; ð26Þ

where nþ 1 again denotes the time index,

hnþ1=2
N ¼ hn

N þ hnþ1
N

2
; ð27Þ

and hN is the surface temperature. Also shown is a
solution reported by Bodin et al. [18] who used a finite
difference-based inverse method and an essentially
identical experimental set-up. It is clear that solutions
obtained by the present method are qualitatively and
quantitatively consistent with those obtained by Bodin et
al. [18]. Considering first the qualitative features
exhibited in Fig. 13, the cylinder is initially enveloped in a
vapor blanket over 850oCJhJ560oC, with correspond-
ing heat transfer coefficients remaining relatively small.
The blanket then collapses, giving way to heterogeneous
surface boiling and a rapid increase in surface heat
transfer (beginning at h � 560oC). Gradual suppression
of two-phase heat transfer, reflected in the subsequent
decay in h , occurs over 450oCJhJ350oC. Finally,
natural convection sets in over 350oCJhJ180oC. Note
that a similar interpretation holds for the estimated flux
history in Fig. 11.

Quantitatively, a comparison of our results with
Bodin’s [18] shows that estimated h magnitudes during
each stage of the quenching process are essentially
equal. Moreover, maximum h values are also nearly
equal. Although it appears that a significant offset ex-
ists between both estimates during the vapor collapse
phase ð560 Co JT J350 CoÞ; in reality, due to the
violence and brevity of this process (occurring in less 10
seconds; see Fig. 11), it is likely that the offset merely
reflects random variations in the degree of liquid-solid
contact and nucleate boiling that occurs during col-
lapse.

5 Summary and conclusions

A modified sequential function specification method
has been developed for stabilizing solutions to
parabolic inverse heat conduction problems. The
method uses computational time steps that are larger
than the typically short experimental sample interval, as
well as future time steps that are equal to the sample
interval. Beyond the advantages associated with Beck’s
two-step solution approach (detailed in Sect. 1), and in
comparison to the standard function specification
method in which the various time steps are set equal,
the modified technique appears to provide: (i) more
rapid error suppression and less damping of early time
inverse estimates (under dynamic heat transfer condi-
tions), (ii) improved stability and accuracy under
comparable levels of data truncation and thermal
measurement error, and (iii) comparable performance
in nonlinear problems.

Application of the inverse method to experimental
quenching of a cylindrical probe yields an estimated
flux history nearly identical to that obtained via
Burggraf’s method [17]. In addition, comparison with
Bodin’s [18] earlier finite difference-based inverse
analysis of a similar experiment shows that both
approaches lead to qualitatively and quantita-
tively similar time-varying heat transfer coefficient
estimates.

The methods developed in this and an earlier study
[12] provide a stable, non-iterative, FEM-based ap-
proach for solving linear and nonlinear, multidimen-
sional inverse heat conduction problems. These features,
combined with explicit determination of the sensitivity
matrix, suggest that the technique may be useful in
applications requiring rapid inverse solutions, e.g.,
thermally-based process control, and thermally-based
imaging (reconstruction) of sub-surface phase bound-
aries [20]. In addition, the method may be adapted to
inverse problems in other areas, such as inverse con-
vection and inverse radiation. Ongoing work in our
group has also extended the method to the relatively
difficult two-dimensional problem of estimating time-
and space-varying surface heat fluxes on two separate
boundaries; the results of this work will soon be re-
ported.

200 300 400 500 600 700 800
0

500

1000

1500

2000

2500
h(

W
/m

2 .
K

)

Temperature (∞C)

Present method

Bodin et al.
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Finally, it is important to again note that the methods
developed here and in [12], while emphasizing a finite
element-based solution of the direct problem, can be
readily adapted to any other numerical scheme [1]. As
described in the Introduction, Beck’s method [1] of
parabolizing the inverse heat conduction problem is
comprised of two essential elements: i) formulation of
the standard form equation, relating the vector of un-
known flux parameters to the instantaneous temperature
field, and ii) derivation of the matrix normal equation
governing the evolution of the unknown parameter
vector. The coefficient matrices arising in each of these
equations are determined by the numerical method used
to solve the direct problem.
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