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Abstract-A three-dimensional model of interstitial fluid flow and passive species transport within min- 
eralized regions surrounding cross-cortical vessel canals is developed. In contrast to earlier studies, the 
present model applies to circulatory, non-stress-induced interstitial flow in porous cortical bone. Based on 
previous experimental observations, the canals are modeled as line sources that pass at an oblique angle 
through the cortex. Cross-cortical interstitial flow from the endosteal surface to the periosteal surface is also 
taken into account. It is found that model transport characteristics are qualitatively consistent with 
reported observations. In addition, parametric studies reveal the following: (1) Solute contact with the 
matrix is maximized when the ratio of canal radius to cortex thickness (R) is near physiological R values. (2) 
Solute-matrix contact falls to low levels when R falls below the physiological range. (3) Solute-matrix 
contact is maximized when the cross-cortical velocity is approximately an order of magnitude smaller than 
the canal outflow velocity. The first and second findings suggest that within porous bone physiological 
ranges of R promote near optimal species contact with the mineralized matrix. The third finding suggests 
that relatively impermeable layers of bone within the cortex can effectively promote solute-matrix contact 
by limiting cross-cortical flow. Finally, the model suggests that intra-canal resorption associated with 
reduced external loading may effectively compensate for reduced stress-induced interstitial flow by enhanc- 
ing circulatory interstitial flow and species transport. 
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NOMENCLATURE 

canals’ angle of inclination relative to the 
bone’s long axis 
dimensional and dimensionless canal radius 
[R = R*/T*] 
dimensional cortex thickness 
dimensional and dimensionless time-averaged -- 
fluid pressure [P = (P* - P:) /AP*] 
dimensional time-averaged x-,y-, and z-velo- 
city components 

subvolume within solution domain 
dimensionless time-averaged cross-cortical 
pressure contribution 
dimensionless time-averaged pressure pro- 
duced by several line sources 
total number of sources used to calculate P,, 
instantaneous dimensionless position vector 
of solute particle which originated from source 
J at angular position Bi and longitudinal posi- 
tion zlr 

EV 
dimensionless time-averaged x-,y-, and z-velo- 
city components [(u,u,w) = (u*,u*,w*) /r*] 
dimensional and dimensionless source 
strength [m* = V’CR*;m = v*R*/(r*T*)] 
permeability 
dimensional and dimensionless time 
[t = t*/( T*/T*)] At 
period for one cardiac cycle 
dimensional time-averaged outward radial ve- 
locity at the canal wall 
characteristic cross-cortical velocity compon- 
ent [r* = k(% - e)/( T*p)] 
dimensional time-averaged endosteal pressure 
dimensional time-averaged periosteal pressure 
fluid viscosity 

+i 
L*;L 

x*,y*,z* 
AY,Z 

v*;v 

dimensional and non-dimensional radial fluid 
velocity at the canal wall 
[V = &R*/(k AP*)] 
dimensional-time averaged cross-cortical 
velocity component 
dimensionless time-averaged cross-cortical -- 
velocity component [F, = ro*p-*I 
dimensionless time increment 
[At = At*/(T*/T*)] 
linear weight function 
dimensional and dimensionless canal length 
[L = L*/T*] 
dimensional Cartesian coordinates 
dimensionless Cartesian coordinates 
C(X,YJ) = (x*,~*,z*YT*l 
dimensional and dimensionless gradient oper- 
ators (defined following equations (4) and (5)) 

dimensional time-averaged pressure difference 
across the cortex [AP* = 2 - P:] Superscripts and diacritical marks 

solution domain 
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dimensional quantity 
time-averaged quantity; distance 
(Appendix A) 
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INTRODUCTION 

Current theoretical understanding of fluid flow and 
species transport within cortical bone remains limited 
and specialized. Almost all prior work in this area has 
focused on flow and transport within osteons (Joh- 
nson et al., 1982; Kufahl and Saha, 1990; McCarthy 
and Yang, 1992; Petrov et al., 1989; Piekarski and 
Munro, 1977; Pollack et al., 1984; Willans and Mc- 
Carthy, 1986). In contrast, theoretical study of inter- 
stitial flow and species transport within porous corti- 
cal bone has not been undertaken. (Following Mon- 
tgomery et al. (1988), we define interstitialpow as flow 
that occurs within both canaliculi and pores within 
the matrix. In addition, based on the finding that 
ferritin (diameter 5 10 nm) often moves rapidly 
through the extra-canalicular porous region (Dilla- 
man, 1984; Montgomery et al., 1988), we define porous 
cortical bone as bone in which the average extra-ca- 
nalicular pore size is approximately 10 nm or greater.) 
Since juvenile bone and significant portions of adult 
bone in various species fall within this classification, 
then theoretical flow modeling should provide insight 
into potential flow and nutrient transport pathways 
within this important bone type. 

Circulatory cortical flow, i.e. interstitial flow driven 
by the heart, may play an important role in cortical 
species transport (Dillaman et al., 1991), particularly 
within developing and non-weight bearing bone. In- 
deed, circulatory flow has been shown capable of 
sustaining non-stress-induced cross-cortical stream- 
ing potentials within canine tibias (Otter et al., 1990). 
However, as in the case of porous cortical interstitial 
flow, it appears that circulatory cortical flow has not 
received theoretical attention. 

Strong experimental evidence indicates that signifi- 
cant circulatory interstitial flow occurs within porous 
cortical bone (Doty et al., 1976; Dillaman, 1984; Mon- 
tgomery et al., 1988; Roer et al., 1988). For example, 
Dillaman (1984), studying flow in non-stressed chick 
femurs, found that intravascularly injected ferritin ap- 
peared within the mineralized region within 5 min of 
injection. In horizontal cross-section, the ferritin typi- 
cally formed discrete, semi-elliptical bands around 
each vessel canal (Fig. l(aHc)), while longitudinal 
cross-sections revealed that the bands often remained 
nearly parallel to the canals’ long axes (Fig. l(d)). 
Montgomery et al. (1988) reported similar findings 
within adult canine tibias. A number of studies have 
also reported evidence of centrifugal circulatory inter- 
stitial flow, wherein fluid moves interstitially from the 
endosteal to the periosteal surface (Brooks, 1970; Dil- 
laman, 1984; Montgomery et al., 1988; Otter et al., 
1990; Seliger, 1971). It is generally believed that this 
centrifugal, or as we will term it, cross-cortical flow, is 
driven by fluid pressure gradients across the cortex 
(Brooks, 1970; Dillaman, 1984; McCarthy and Yang, 
1992; Otter et al., 1990). Importantly, both near-canal 
and cross-cortical interstitial transport appear to re- 
flect bulk interstitial fluid flow rather than diffusion 

since solute markers remain well defined as they 
propagate through the matrix (Dillaman, 1984; Mc- 
Carthy and Yang, 1992; Montgomery ct ul., 1988). 
Circulatory interstitial flow is clearly evidenced since 
apparent bulk interstitial transport has been observed 
in anesthetized test subjects (Dillaman, 1984; Mon- 
tgomery et al., 1988). 

The objective of this paper is to develop a simple 
model of circulatory, non-stress-induced interstitial 
flow and species transport within porous cortical 
bone, focusing in particular on flow and transport 
within mineralized regions surrounding cross-cortical 
vessel canals. Model flow and transport predictions 
are compared against the experimental observations 
reported by Dillaman (1984) and Montgomery et al. 
(1988). In addition, using non-dimensional para- 
meters representative of a wide range of possible con- 
ditions, the model is used to investigate the effects of 
canal radius, canal orientation, and cross-cortical in- 
terstitial flow on overall flow and species transport 
characteristics. 

METHODS 

In order to compare model predictions against ex- 
perimental results, we will arrange vessel canals in 
a manner similar to those observed in two-day-old 
chick femurs (Fig. 1). In addition, in order to minimize 
computational requirements, we will limit our atten- 
tion to a region, R, containing ten vessel canals 
(Fig. 2). It is important to note that the arrangement 
and number of canals can be readily modified. The 
model itself is based on the following assumptions. 

(1) The vessel canals are mutually parallel and pass 
obliquely from the endosteal to the periosteal surface 
of the cortex. 

(2) The vessels’ long axes form an angle $0 with the 
endosteal surface (Fig. 2(c)). 

(3) Every canal is circular and has a radius R*. 
(4) The azimuthal angle (about the bone’s long 

axis) which encompasses the solution domain is small 
enough that the azimuthal cross-section can be taken 
as rectangular (Figs l(c) and 2(a)). 

(5) In order to simulate the effect of flow induced 
by vessel canals lying outside the solution domain, 
Q, we assume that the arrangement of vessel canals 
(Fig. 2(b)) repeats itself in the azimuthal direction. 

(6) The matrix is a homogeneous continuous me- 
dium (Petrov et al., 1989). 

(7) Permeability is homogeneous and isotropic, 
and thus constant. 

(8) Flow within the porous matrix is incompress- 
ible and governed by Darcy’s law (see equation (4) 
below). 

(9) In order to simulate circulatory pressure and 
velocity variations, we assume that pressure and velo- 
city are composed of a steady, time-averaged com- 
ponent plus a perfectly cyclic, time-dependent com- 
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Fig. 1. Micrographs showing position of ferritin within chick cortical bone in the vicinity of cross-cortical 
vessel canals (from Dillaman, 1984). Ferritin was injected for 2 min (at 0.1 ml min - ‘) into the jugular vein 
and the specimen were gathered 5 mins after injections ceased. (aHc) Lateral cross-sections show bands of 
ferritin around all canals (typical bands shown by arrows). Note that osteocytic lacunae appear as small, 
dye-filled semi-ellipsoids around each canal. (d) Longitudinal cross-section shows a ferritin band (arrow) 
essentially parallel to the parent vessel canal. Magnifications are: a, 1000 x : b and c, 750 x ; d, 575 x The 
periosteal surface, denoted by P, is visible near the top of(b) and (c) and is located above the top edge of (a) 
and (d). The endosteal surface, denoted by E, is located at the lower left corner of(c), near the center of(d). 

and immediately below the bottom edges of (a) and (b). 
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Fig. 2. Model geometry. (a) Modeled region shown relative to bone shaft. Note, x- and y-axes tilt at an 
angle & relative to the shaft’s long axis. (b) Top view of modeled region. (c) Lateral view of modeled region 
(located within the dotted lines). The view in (c) corresponds to the cross-hatched region in (a). The 
cross-cortical velocity component l?$ is shown in (c) along with its components in the x*- and z*-directions. 
In all calculations, T* = 250 pm, X,* = 200 pm, r(: = 185.2 pm, d: = 55.6 ym, df = 37.0 pm, 
df = 70.4 pm, dt = 29.6 Frn, and d: = 55.6 pm. The length L* of the solution domain is given by 
L* = (L?, - T* tan &)cos r$,,. where L$ = T*(l + sin* &)/(sin &, cos &,) - X:/sin &,. (Note, the last two 

relationships are derived in Appendix A.) 

ponent: 

---- 
(P*,u*,u*,w*) = (P*,u*,v*,w*) + (p’,u’,u’,w’), (1) 

where averaging is performed over one cardiac cycle, 
t*' 

0' 

-- 1 (P*,u*,u*, P) = t* 
s 

t*+r’, 
(P*,u*,u*,w*)dt* (2) 

0 ** 

and where time-dependent components are denoted 
with a prime. Throughout this paper, x-,y-, and z- 
velocity components are denoted by u, u, and w, re- 
spectively, while pressure is denoted by P. Dimen- 
sional quantities are denoted with asterisks while 
non-dimensional quantities are not starred. Notice --- 
that P’,u’,u’, and 7 are all equal to zero and that 
steady and time-dependent components are, in gen- 
eral, spatially dependent. 

(10) Time-averaged pressures on the endosteal and 
periosteal surfaces are constant. However, in accord 
with evidence that a pressure gradient exists across 

the cortex (Brooks, 1971; Dillaman, 1984; Otter er al., 
1990), average pressures on each surface assume dif- 
ferent magnitudes. 

(11) A cross-cortical interstitial flow, denoted by 
the velocity vector q in Fig. 2(c), and driven by the 
time-averaged cross-cortical pressure gradient, is as- 
sumed to exist. 

(12) Consistent with the fact that solute markers 
typically form semi-elliptical bands or haloes around 
vessel canals (Dillaman, 1984; Montgomery, 1988), we 
model outflow from each vessel canal as line source 
flow. In addition, all line sources have the same 
strength, m*, where m* is defined as m* = FR* and 
where v* is the time-averaged radial outflow velocity 
at the canal wall. (Consider a cylindrical coordinate 
system. In line source flow, fluid flows radially out- 
ward from a line that is parallel to the z-axis. At any 
given radial distance r* from the line, velocities are 
purely radial and are given by II* = (m*/r*) C,, where 
again m* is the dimensional source strength. See, e.g. 
Fox and McDonald, 1992.) 
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(13) Finally, in accord with the observation that 
ferritin rings within the matrix remain well defined as 
they propagate through the matrix (Dillaman, 1984; 
Montgomery et al., 1988) we neglect solute dispersion 
and diffusion. The validity of most of these assump- 
tions is considered in the Discussion section below. 

In order to efficiently consider a wide range of 
conditions, it proves convenient to cast the problem in 
terms of non-dimensional variables. Here non-dimen- 
sionalization is carried out as follows: 

(x,y,z) = (x*/T*,y*/T*,z*/T*) (u,u,w) 

= (u*/r*,u*/r*,w*/r*), 
-__ 

P = P*/AP*, (3) 

where T* is the thickness of the cortex, r* 
= k(?$ - Pg)/(T*p) is the characterisitic time-aver- --- 

aged cross-cortical velocity, and u,v,w and u*,v*,w* 
are the time-averaged dimensionless and dimensional 
x-,y-, and z-velocity components. In addition, 
AP* = E - p,*, is the time-averaged pressure differ- 
ence across the cortex, and p,* and p,* are the time- 
averaged pressures on the endosteal and periosteal 
surfaces. The overbar has been dropped from non- 
dimensional variables for convenience. Characteristic 
dimensional parameter values, obtained from various 
species, are given in Tablel. Based on the definitions 
above, the dimensionless source strength, m, is given 
by m = V*R*/(T*T*). Due to potential variations in 
permeability near the periosteal (Montgomery et al., 
1988) and/or endosteal surfaces (Dillaman et al., 
1991), we will allow for the possibility that the actual 
cross-cortical velocity (I:) within R is not necessarily 
equal to the arbitrarily defined cross-cortical velocity 
scale, ̂ i”. We will, however, assume that the time- 
averaged cross-cortical pressure difference (AP*) and 
cross-cortical velocity component (r,*) are constant 
within R. The non-dimensional cross-cortical velocity 
component will be defined as IO = I;/I*. 

The time-averaged form of Darcy’s law is given by 

where equations (1) and (2) have been used and where 
k is the permeability, p is the fluid viscosity, and 
V* = (a/&*) & + (ajay*) C, + (I?/~z*) &, is the gradi- 
ent operator. Note that the instantaneous form of 
equation (4) is obtained by simply replacing averaged 
quantities with their instantaneous counterparts. 
Since external loading is not considered, time-varying 
porosity changes can be neglected (Johnson et al.. 
1982) so that the time-averaged continuity equation 
assumes the form 

v*.u* =o. (5) 

Using the non-dimensional variables defined in equa- 
tion (3) and defining V = (a/ax) &, + (a/rYy) it, + (a/&) 
C,, we obtain the dimensionless time-averaged form 
of Darcy’s law 

u=VP (6) 

and the corresponding dimensionless continuity 
equation 

v-u=o. (7) 

Finally, replacing u in equation (7) with the right-hand 
side of equation (6), we obtain the governing equation 
for the dimensionless, time-averaged interstitial fluid 
pressure field 

VP = 0. (8) 

Based on the assumptions listed above and noting 
that line sources are fundamental solutions of equa- 
tion (8), the time-averaged pressure field within R is 
obtained by superposing the time-averaged cross-cor- 
tical pressure contribution with the time-averaged 
pressure induced by all of the canals (line sources) 
interior and exterior to R. Considering first the cross- 
cortical pressure contribution, PC,, the dimensionless 
cross-cortical velocity, I-0, can be resolved into a com- 

Table 1. Approximate dimensional parameter values 

Parameter Symbol Approximate magnitude Species 

Cortex thickness T* 
Cortex thickness T* 
Vessel canal radius R* 
Vessel canal radius R* 
Canal angle $0 
Cross-cortical pressure difference ZF 
Permeability k 
Fluid viscocity P 

2.5 (10w5) m 
9.0 (10-a) m 
2.7 (10m6) m 
5 (10e5) m 

lo" <&Q20" 
5330N mm2 

lo-l4 m* < k < lo-” m2 
2 (lo-5 kg:-’ s-r 

Chicken* 
Humant 
Chicken 
Humanf 
Chicken 

Doi& 
Ratfl 

Note 5 

*Data for chicken taken from Dillaman (1984). 
tMihalko et al. (1992). 
$Pollack et al. (1984). 
Rotter et al. (1990). 
PDillaman et al. (1991). 
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ponent, I-0 sin 40, parallel to the z-axis and a compon- 
ent, l-0 cos $0, parallel to the x-axis (Fig. 2(c)). Thus, 
from equation (6), the pressure component (P,,) which 
drives the cross-cortical flow is given by 

Pee = TO cos C#QX + I-0 sin &z. (9) 

From this equation it is clear that a constant cross- 
cortical velocity component, I-0, corresponds to a lin- 
early varying pressure contribution, PC,, across the 
cortex. Dillaman’s (1984) heuristic model of pressure 
driven flow within the cortex implicitly assumed the 
same linear cross-cortical pressure variation. Thus, 
the present model is fully consistent with Dillaman’s 
(1984) earlier model while extending that work by 
providing a quantitative interpretation for radial out- 
flow from the canals (see next paragraph). 

Considering next the pressure induced by outflow 
from cross-cortical canals, PI,, we note that the pres- 
sure, Pj, induced at a point (x,y,z) by a single line 
source passing through the point (xj,yj) (parallel to 
the z-axis) is given by 

PJ = t?l ln[(.u - N,)’ + (y - yj)2]“2, (10) 

where m is the dimensionless source strength. Thus, 
the interstitial pressure induced by N canals, located 
both within and outside the solution domain, is ob- 
tained by summing all of the individual pressure con- 
tributions. The result is given by 

Pls = WI f ln[(x - Xj)’ + (y - yj)‘]l”, (11) ,=1 

where we have assumed that each of the N sources are 
of strength m. Since the time-averaged three-dimen- 
sional interstitial pressure field within the solution 
domain is the sum of P,, and PI,, the three-dimen- 
sional interstitial flow field, obtained from equation 
(6), is given by 

U=VP=V 
I 

mf lIl[(X-Xj)2 
j=l 

+ (Y - .Vj)211’z + ro(xcOs~o + zsin&) 1 (12) 

Since species diffusion and dispersion are neglected, 
species transport is driven strictly by the interstitial 
how field. Thus, a particle tracking scheme can be 
employed in order to determine the temporal move- 
ment of solute within the interstitial space. A system 
of seven repeating arrays of 10 canals each are ar- 
ranged in the y-direction. (A unit array is shown in 
Figs 2 (b) and 2(c).) These are used to generate the 
time-averaged pressure component PI. within the 
solution domain (corresponding to the central, or 
fourth unit array). (Results remain essentially un- 
changed when more than seven arrays are used in the 
calculation.) In order to simulate solute transport 
following injection of a small amount of solute (Dilla- 
man, 1984; Montgomery et al., 1988), it is assumed 
that all solute particles leave the canals at time zero. 
Let rJ(t;@i,ze) denote the time-varying position of the 

solute particle which originated from source J at 
angular position & and longitudinal position zk. At 
each of 10 longitudinal positions, zk (where z1 = 0, 
z2 = L/9, . ..) zIO = L), solute particles are initially 
placed at 32 equiangular positions (6i) around the 
circumference of each canal (Qi = n/16, 82 = x/8, , 
032 = 2n). Thus, 320 particles are initially placed at 
the wall of each of the lO( = J) canals. Since diffusion 
does not occur, updates of r~(t;&,z~) are carried out 
using 

fJ(t •t Al;Oi,Zk) = rJ(f;oi,Zk) + U(rJ(t;ei,zk))At, (13) 

where u(rJ(t;&,zk)) is the time-averaged velocity at 
position rJft;ei,zk), and where At( = At*/T*/T*) is the 
dimensionless time step. 

The solution domain is subdivided into 72 equal 
increments in both the x- and y-directions and into 
200 increments in the z-direction; equivalently, the 
domain is discretized using 73 x 73 x 201 nodes. The 
dimensional length L* of the solution domain is given 
by L* = (LE - T* tan $0) cos&, where Lo* = T* 
(1 + sin ‘&)/(sin 40 cos $0) - X:/sin 4. and where 
Xt is the length of R in the x-direction (refer to Fig. 
2 and to Appendix A). Based on Dillaman’s (1984) 
morphological data (reproduced, in part, in Fig. l), all 
calculations assume Xg = 200 pm, c = 185 pm and 
T* = 250 pm, where c is the azimuthal length of the 
solution domain. The distances d:-dz (Fig. 2(b)) are 
similarly based on Dillaman (1984). 

Velocities at each node are generated using equa- 
tion (12). Given the particle position rJ(t;&,ik), which 
lies within some brick shaped subvolume, Q,, of the 
solution domain, the velocity u(r&Bi,zk)) in equation 
(13) is determined by linearly interpolating the sub- 
volume’s eight nodal velocities ui: 

U(X,.V,Z) = i 4iUi, (14) 
i=* 

where ui is the velocity at the ith vertex of R, (cal- 
culated from equation (12)) and 4i is the correspond- 
ing linear weighting function (see, e.g. Zienkiewicz, 
1977). This approach proves much more efficient than 
calculating the non-nodal velocities u(rJ(t;&,zk)) from 
equation (12). The species transport calculation is 
stopped when all 3200 particles pass out of the solu- 
tion domain. The fraction of bone contacted by solute 
within the solution domain is determined by summing 
all of the subvolumes contacted by the particles. This 
is a fairly accurate approximation since the maximum 
ratio of subvolume volume to total volume is of the 
order of 10W6. It was found that convergent values for 
the fraction of bone contacted could be obtained for 
time steps (At) smaller than 5; Ar = 2 in all solute 
contact calculations presented below. (For clarity, 
At = 20 when succeeding solute front positions are 
plotted. In addition, the fraction of bone contacted by 
solute is expressed as a percentage in Figs 5 and 7, as 
discussed below.) 

The non-dimensional parameter ranges that we 
examine are listed in Table 2. It is important to note 
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Table 2 Non-dimensional parameter ranges 

Parameter Range 

Canal radius (R) lo-’ -$ R < 10-l 
Cross-cortical velocity (I-,) o<ro<l 
Source strength (m) O<m< 10-l 
Canals’ angle of inclination (&) 10” < & < 20” 

that a complete set of values for T*,R*,k,AP*, P. 
and r*, taken from a single species, does not appear 
to exist. Thus, it is appropriate to examine flow and 
transport characteristics over physically relevant 
parameter ranges rather than at a single ill-defined set 
of parameter values. In order to identify appropriate 
ranges for TO and m, we first identify the appropriate 
velocity scale, i.e., the approximate maximum velocity 
in the problem. In the case of flow within chick fe- 
murs, it is straightforward to show that the velocity 
scale 1s set by the characteristic cross-cortical velocity, 
r*. In particular, a conservative estimate of r*, ob- 
tained using AP* - 5330Nme2, p-0.002 kgm-‘s-l, 
T* - 2.5( 10e4) m, and a relatively small permeability 
of k - lo- I4 mz (refer to Table l), indicates that F is, 
at minimum, on the order of - 10e4m s-l. On the 
other hand, the outflow velocity, v*, estimated by 
dividing the average ferritin displacement (Fig. 1) by 
the known 7 min time interval, is approximately equal 
to 6(10-‘) m s- ‘. Thus, since a conservative estimate 
of I” is approximately three orders of magnitude 
larger than v*, then F clearly determines the velo- 
city scale. Due to permeability variations near the 
endosteal and/or periosteal surfaces, the actual cross- 
cortical velocity (c) can assume values between zero 
and r*. Thus, the appropriate range of values for the 
dimensionless cross-cortical velocity (TO = c/p) is 
0 < TO < 1. Notice that this is the appropriate range 
for l-0 regardless of the actual value of F. With 
regard to the appropriate range for the non-dimen- 
sional source strength m, we note that m is equal to the 
non-dimensional velocity at the canal wall -- 
(V = p/T*) multiplied by the non-dimensional canal 
radius R. Since the largest realistic value of R is of the 
order of 0.1 (Jowsey and Gordan, 1971) and since the 
maximum value of V is 1 (i.e. the maximum possible 
value of v* 1s r*), then the appropriate range for m is 
0 < m < 0.1. Note that the range of R we examine 
(Table 2) is expected to encompass all physiologically 
relevant R values and that the range for & is based on 
Dillaman’s (1984) observations in chick femurs. 

Prior to carrying out parametric studies, we define 
a reference flow field that roughly corresponds to flow 
in chick femurs (Dillaman, 1984). Reference values 
for R and m are obtained using R* = 2.5(10m6) 
m, T* = 2.5(10e4) m s-l, and v* = 6(10m8) ms-’ 
(all based on Dillaman, 1984) and by arbitrarily set- 

ting r*= 10m4msm (see last paragraph). Thus, ilr 
the reference flow, R = /7*,7’* = 001. and 
m = 6( lo- 6). It is important to realize that we are free 
to set the value of r* since r* merely serves as a scale 
factor for all velocities in the problem. Since the LX- 
nals’ angle of inclination over most of the chick’s 
femoral shaft is approximately 10 (Dillaman, 19841, 
we choose this as the reference value for do. Unfortu- 
nately, the cross-cortical velocity (c) in Dillaman’s 
(1984) study is unknown. In an attempt to obtain 
a rough estimate of c, or equivalently, TO. trial and 
error simulations were run until predicted flow char- 
acteristics were qualitatively similar to those observed 
by Dillaman (1984). Since a family of such flows was 
found over the range 0 ,< PO < 10. ‘, we arbitrarily 
set the reference value of To equal to 
m(To = m = 6(10m6)). In order to account for the fact 
that experimental cross-sections cut across the canal 
array at an angle (Fig. 2), plotted solute positions 
(Figs 5 and 7) are images that are resolved from the 
plane z = 1 onto the plane of cross-section. 

RESULTS 

Qualitative solute transport characteristics for the 
reference flow show that at early times following sol- 
ute release, semi-elliptical haloes form around each 
canal (Fig. 3). At later times, the elliptical haloes 
deform and stretch as they propagate around other 
vessel canals within the solution domain (Fig. 3(b)). 
A slight asymmetry in the pattern of solute movement 
is detectable where solute fronts are displaced slightly 
toward the periosteal surface. 

The volume of matrix contacted by the solute 
(which we will refer to as solute coverage) increases 
with increasing canal radius (Figs 4 and 5). The in- 
crease from low to high levels of solute coverage 
essentially occurs over a single decade in R (i.e. 
0.001 < R < 0.01) while coverage is essentially com- 
plete for R > -0.01. Over the range 10.. ’ d R 
< 10-3, coverage slowly increases from approxim- 

ately 7 to 25%. Under the range of conditions investi- 
gated, solute coverage is essentially independent of the 
angle of inclination & (Fig. 4). 

At cross-cortical velocities (I-0) less than approxim- 
ately 0.0001, and for any of the given canal radii (R), 
solute coverage varies little with decreasing To 
(Fig. 6). In contrast, solute coverage decreases with 
increasing cross-cortical velocity when To > - 0.0001. 
For each given R, solute coverage is greatest when 
To is less than approximately 0.0001 and approaches 
zero for To greater than -0.01. Coverage at each 
value of R is again nearly independent of the angle of 
inclination (Fig. 6). Qualitatively, when the cross-cor- 
tical velocity is zero, solute coverage is at all times 
symmetric with respect to both vertical and horizon- 
tal center lines within the solution domain (Fig. 7(a)). 
However, coverage becomes increasingly asymmetric, 
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a 

b 

Fig. 3. Time-varying solute front positions corresponding to 
the reference flow field. The flow field, simulated using para- 
meter values from Dillaman (1984), roughly corresponds to 
that in chick femurs. The canals’ angle of inclination (&) and 
non-dimensional radii (R) are lo” and 0.01, respectively, 
while the non-dimensional source strength (m) and non-di- 
mensional cross-cortical velocity (r,) are both equal to 
6(10A6) Note that R is the ratio of canal radius to cortex 
thickness while To is the ratio of the cross-cortical velocity to 
the cross-cortical velocity scale. In addition, m is equal to the - 
outward velocity at the canal wall, P, divided by the cross- 
cortical velocity scale, F, and multiplied by R. In (a), the 
non-dimensional time, t, ( = t*/(T*/+)) equals lOCAn (b), 
the dimensionless time increment (At = At*/(Z’*/r*)) be- 
tween succeeding fronts is 20. Note, the periosteal and endos- 
teal surfaces are located to the left and right of each plot, 

respectively. 

with solute being pushed toward the periosteal sur- 
face, at larger values of TO (Fig. 7(bHd)). At the high- 
est cross-cortical velocities, solute haloes appear to 
maintain their initial size and shape while traveling 
toward the periosteal surface (Fig. 7(d)). 

Although not shown, it is found that solute cover- 
age is independent of the source strength m. However, 
the time required for all solute particles to pass out of 
the solution domain decreases with increasing m. 

DISCUSSION 

The study’s first objective was to develop a simple 
model of circulatory interstitial flow and transport 
within porous cortical bone, taking into account 
vessel canal outflow, canal inclination and shape, and 
cross-cortical flow. The second objective was to vali- 
date the model by comparing predicted transport 
characteristics with experimental observations. Fi- 
nally, the model was to be used to investigate the 
effects of canal radius, canal inclination, and cross- 
cortical velocity on interstitial solute transport. 

Prior to discussing the results, we consider the 
validity of various assumptions underlying the model. 
Since canal radii typically fall within a fairly narrow 
range of values (Pollack et al., 1984) and since cross- 
cortical canals are typically close to parallel (see, e.g. 
Dillaman, 1984), the assumptions (1 and 3) that all 
canals are mutually parallel and of equal radius ap- 
pear to be reasonable in the present first-order model. 
Replacing an angular cross-section of the cortex with 
a rectangular section (assumption 4) is reasonable if: 
(i) the ratio of azimuthal intercanal spacing (i.e. the 
average azimuthal distance between canals) to the 
bone’s circumference is small and, (ii) relatively few 
canals are included in the solution domain (so that the 
azimuthal length of the domain is small compared to 
the bone’s circumference). Since the ratio of azimuthal 
intercanal spacing to bone circumference is of the 
order of 0.01 in both chick cortical bone (Dillaman, 
1984) and canine bone (Rhinelander, 1972) and since 
the solution domain is limited to three rows of canals, 
this also appears to be a reasonable simplification. 
The assumption that the mineralized matrix is homo- 
geneous and continuous (assumption 6) represents an 
idealization since the matrix contains numerous os- 
teocytic lacunae and associated canalicular net- 
works. (Note, lacunae are small ellipsoidal cavities 
enclosing single bone cells, or osteocytes; canaliculi 
are microscopic channels that pass out of lacunae. 
connecting a given lacuna to neighboring lacunae and 
to a parent vessel canal. In Fig. 1, osteocytic lacunae 
appear as small ferritin-filled cavities surrounding 
each vessel canal.) However, if the characteristic la- 
cunar length LT (e.g. major axis length) is much 
smaller than the smallest characteristic length in the 
idealized problem (i.e. the canal radius R*), then the 
matrix can be taken as continuous. Based on Dilla- 
man’s (1984) photomicrographs and on data given by 
Pollack et al. (1984) the ratio of L,* to R* ranges from 
0.1 to 0.2, suggesting the validity of a continuum 
approach. Note that Petrov et a[. (1989), using a con- 
tinuum assumption, accurately predicted stress-in- 
duced streaming potentials within osteons. With re- 
gard to assumption (9), although circulatory flow is 
not perfectly periodic, the assumption of perfect peri- 
odicity is a reasonable first approximation. The as- 
sumption that canal outflow can be modeled as line 
source flow (assumption 12) is suggested by the pat- 
terns of marker movement near vessel canals and is 



Nondimensional Canal Radius R 
Fig. 4. Fraction of matrix within the solution domain contacted by solute (expressed as a percentage), given 
as a function of the dimensionless canal radius R and angle of inclination &. The amount of solute contact 
with the surrounding matrix increases with increasing R. The range of R over which solute coverage 
increases to high levels (0.001 < R < 0.01) roughly corresponds to the range of R values observed in 
humans and chicks. Over the range of R’s shown, solute coverage is essentially independent of the canals’ 
angle of inclination. In all cases, m = I,, = 6(1O-6) Refer to the caption to Fig. 3 for definitions of the 

non-dimensional parameters. 
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Fig. 5. Time-varying solute front positions as a function of the dimensionless canal radius R:(a) R = 0.01, (b) 
R = 0.007, (c) R = 0.004, (d) R = 0.001. This shows that lateral solute spread and consequent solute-matrix 
contact decreases significantly over a single decade in R(0.001 6 R < 0.01). Solute contact is greater than 
95% for R > -0.01 and less than 10% for R d -O.OCNX (refer to Fig. 4). The endosteal and periosteal 
surfaces are located to the left and right of each plot, respectively. Note the slight asymmetry in solute 
propagation as solute is pushed from the endosteal surface toward the periosteal s&ace. In all cases, 
& = lo”, m = To = 6(10e6) . Refer to the caption to Fig. 3 for definitions of the nondimensional 

parameters. The dimensionless time increment between succeeding fronts is 20. 
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Fig. 6. Fraction of matrix within the solution domain contacted by solute (expressed as a percentage), given 
as a function of the non-dimensional cross-cortical velocity (r,) , the non-dimensional canal radius (R) , and 
the canals’ angle of inclination (&,) . For each value of R, the level of solute coverage is highest for 
To < -0.0001. In contrast, coverage approaches zero as To approaches 1. For each R, solute coverage is 
essentially independent of the angle of inclination &. In all cases, the canal source strength, m, equals 

6(10m6) . Refer to the caption to Fig. 3 for definitions of the non-dimensional parameters. 
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Fig. 7. Time-varying solute front positions as a function of dimensionless cross-cortical velocity To. Solute 
coverage decreases with increasing cross-cortical velocity since the ratio of lateral to cross-cortical 
displacement during any time increment decreases with increasing To. Thus, particles are confined to 
smaller lateral regions at larger values of To. Asymmetry in solute coverage clearly increases with increasing 
cross-cortical velocity. Note that the endosteal and periosteal surfaces are located to the left and right of 
each plot, respectively. In all cases, R = 0.01, & = lo”, and m = 6(10m6) The dimensionless time 
increment between succeeding fronts is 20: (a) To = 0, (b) To = 6(10-?,(c) To = 6(10-‘?,(d) To = 6(10-? 

Refer to the caption to Fig. 3 for definitions of the non-dimensional parameters. 
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valid when the ratio of canal radius (R*) to the charac- 
teristic distance (H*) between canals is small (Keanini. 
1994). When this condition holds, outflow from canals 
appears as line source flow at distances on the order of 
H*. Since the ratio of R* to H* is of the order of 0.1 in 
chick femurs (Dillaman, 1984), approximately 0.05 to 
0.2 in canine long bones (Rhinelander, 1972). and 
approximately 0.05 to 0.3 in human long bones 
(Pidaparti and Burr, 1992), this again appears to be 
a reasonable approximation. (Note, H* could be 
taken as either dz or dz in Fig. 2(b) since both distan- 
ces are of the same order of magnitude.) Finally, the 
assumption (12) that all canals have equal strengths 
can be relaxed to allow differing ms (or equivalently, 
different outflow velocities and/or differing canal 
radii). However, this level of specialization is deemed 
unnecessary in a first-order model and, moreover, 
would be difficult to implement using present marker 
data. 

Predicted solute transport characteristics for the 
reference case (Fig. 3) are qualitatively consistent with 
Dillaman’s (1984) observations (Fig. 1). Although not 
shown, model predictions are also consistent with the 
observations reported by Montgomery et al. (1988). 
The model thus suggests that the semi-elliptical halo 
shapes observed by Dillaman (1984) and Mon- 
tgomery et al. (1988) reflect: (i) superposition of pres- 
sure fields induced by several neighboring canals and, 
(ii) projection of semi-circular haloes (on planes 
2 = constant) onto the plane of cross-section (where 
the haloes appear elliptical). The model also captures 
the displacement of solute toward the periosteal sur- 
face, as observed by Dillaman (1984) and Mon- 
tgomery et al. (1988) (Figs 5 and 7). Thus, the model 
supports the view that the displacement is caused by 
cross-cortical interstitial flow (Dillaman, 1984; Mon- 
tgomery et al.. 1988). Assuming that the displacement 
indeed reflects cross-cortical flow, and noting that the 
largest matrix pores (- 100 nm characteristic dia- 
meter) in porous cortical bone are only an order of 
magnitude smaller than the average diameter of ca- 
naliculi (McCarthy and Yang, 1992), then the results 
of Dillaman (1984) and Montgomery et al. (1988) 
suggest that circulatory interstitial cross-cortical flow, 
originating at the endosteum, could represent a signif- 
icant osteocytic nutrient supply route. 

The finding that solute coverage is sensitive to 
canal radius (Figs 4 and 5) appears to be a new result. 
Importantly, the model indicates that coverage in- 
creases from relatively low levels to high levels over 
a range of Rs (- 0.001 < R < -0.01) that essentially 
coincides with the range of Rs found in humans 
(- 0.003 < R < -0.006; Mihalko et al., 1992; Pollack 
et al., 1989) and chicks (-0.005 < R < -0.01; Dilla- 
man, 1984). This suggests that within porous cortical 
bone, the ratio of canal radius to cortex thickness (R) 
promotes near-optimal species contact with the 
matrix. This view is supported by the fact that cover- 
age is maximized near physiologically realistic 
R values (i.e. near R > -0.01; see Fig. 5). Although 

simulations show that complete coverage occurs at 
R values larger than 0.1. actual R values appear to 
rarely achieve magnitudes this large. This may reflect 
the fact that the cross-sectional area of mineralized 
bone, and thus the bone’s load-carrying capacity, de- 
creases with increasing R. Observed R values may 
thus be the minimum values that allow complete or 
near-complete specie-matrix contact; larger R values 
may reduce structural strength to insufficient levels. 

The model suggests that species-matrix contact 
(within porous cortical bone) may be enhanced during 
periods of intra-canal resorption and suppressed dur- 
ing periods of intra-canal deposition (resulting in ca- 
nal enlargement and shrinkage, respectively). Since 
extended periods of reduced loading can induce re- 
sorption (see, e.g. Dillaman et a!., 1991), and since 
stress-induced interstitial flow likely predominates 
over circulatory interstitial flow (at least under most 
external load conditions; see Piekarski and Munro, 
1977), then the model suggests that reduced-load-in- 
duced resorption may effectively compensate for re- 
duced or non-existent stress-induced flow by enhanc- 
ing circulatory flow and species transport. Experi- 
mental evidence is needed in order to fully address this 
intriguing question, however. 

Solute coverage is maximized only when the cross- 
cortical velocity (IO) is less than or equal to (approx- 
imately) 6(10-‘) (Fig. 6). Since m/r, = FR/y, and 
since m = 6(10m6) in these calculations, then it is seen 
that coverage is maximized when the ratio of actual 
velocities p/c is greater than -0.1/R. Thus, for the 
range of Rs shown, maximum coverage occurs when 
the canal outflow velocity (Y*) is, at minimum, one 
(R = 0.01) to two (R = 0.001) orders of magnitude 
larger than the cross-cortical velocity (c) Physically, 
optimal coverage requires that the canal outflow velo- 
city be of sufficient magnitude relative to the cross- 
cortical velocity to allow significant lateral solute 
propagation (in xy-planes) into the matrix. In con- 
trast, when the cross-cortical velocity is high relative 
to F, lateral displacements are small as solute par- 
ticles are rapidly swept across the cortex (Fig. 7). 
These results suggest that the relatively impermeable 
appositional layers of bone that often underlie the 
periosteal surface (Montgomery et al., 1988) may en- 
hance species coverage by limiting cross-cortical flow. 
If we surmise that nature has optimized cross-cortical 
flow to allow maximum species contact with cells 
within the matrix, then the actual cross-cortical velo- 
city(c) will be less than approximately 0.0001 I* (see 
Fig. 6; note F = k(E - E)/( T*p)) Again, however, 
experimental data are needed in order to address this 
question. 

In summary, parametric studies based on the pres- 
ent theoretical model lead to four principal findings: 
(1) Model transport characteristics are qualitatively 
consistent with the experimental observations re- 
ported by Dillaman (1984) and Montgomery et al. 
(1988). (2) Solute contact with the matrix is maximized 
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when the ratio of canal radius to cortex thickness, R, 
is near physiological R values. (3) Solute-matrix con- 
tact decreases to relatively low levels when R falls 
below the physiological range. (4) Solute-matrix con- 
tact is maximized when the cross-cortical velocity is 
approximately an order of magnitude smaller than 
the canal outflow velocity. The first three findings 
suggest that within porous bone physiological ranges 
of R promote near-optimal species contact with the 
mineralized matrix. The fourth finding suggests that 
relatively impermeable layers of bone within the cor- 
tex can effectively promote solute-matrix con‘tact by 
limiting cross-cortical flow. Finally, the model sug- 
gests that intra-canal resorption associated with re- 
duced external loading may effectively compensate for 
reduced, stress-induced interstitial flow by enhancing 
circulatory interstitial flow and species transport. 
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APPENDIX A 

In order to relate L* to L,*, we extend the dashed lines at 
Z* = 0 and Z* = L* into the top left and bottom right 
corners (respectively) of the bounding solid rectangle CGED 
(shown in Fig. Al, which is taken from Fig. 2(c)). We then 
form the right triangles AADE, AABC and ACFG. First note 
that 

-- 
L;=DA+AC. (Al) 

Referring to AADE and AABC, it is seen that 
- 
DA = T* tan b. and E = L*/ cos &,. W) 

Using equation (A2) in equation (Al) and rearranging we 
obtain a relationship between L* and L,*: 

L* = (Lz - T* tan &)cos &. (A3) 

L,+ can be related to the cortex thickness T* and to the 
height Xg of the solution domain as follows. First note that 

iii? = FBC - X,* = T*/cos &, - X,*, (A4) 

where we have inserted the length of the line segment FBC in 
the right equality (FBC = T*/cos&,) Referring to AABC, 
we see that ? is also given by 

BC = ACsin&,. (A5) 

Fig. Al. Lateral view of the solution domain (adapted from 
Fig. 2(c)). The right triangles AADE, AABC and ACFG are 
formed by extending the dotted line segments at Z* = 0 and 
Z* = L* into the upper left and lower right corners of the 
solid rectangle CGED. Note that angles L EDA, L ABC and 
L FCC are right angles and that angles L DEA, L BAC and 

L FCC all equal &. 
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Replacing z with the second relationship in (A2) and then Finally, equating the right-hand sides of (A4) and (A61 and 
substituting the right-hand side of (A3) for L* we obtain solving for LX we obtain a relationship between Lz and 

T* and X8: 

z = (LX - T* tan 4,,)sin &. L46) Lfj = T* (1 + sin2&),/(cos &, sin 4,)) - .YX.! sin qO. (A7) 


