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It is well known that the dynamic performance of a rocket or launch vehicle is enhanced when the
length of the divergent section of its nozzle is reduced or the nozzle exit area ratio is increased.
However, there exists a significant performance trade-off in such rocket nozzle designs due to the
presence of random side loads under overexpanded nozzle operating conditions. Flow separation
and the associated side-load phenomena have been extensively investigated over the past five
decades; however, not much has been reported on the effect of side loads on the attitude dynamics
of rocket or launch vehicle. This paper presents a quantitative investigation on the influence of
in-nozzle random side loads on the attitude dynamics of a launch vehicle. The attitude dynamics of
launch vehicle motion is captured using variable-mass control-volume formulation on a cylindrical
rigid sounding rocket model. A novel physics-based stochastic model of nozzle side-load force is
developed and embedded in the rigid-body model of rocket. The mathematical model,
computational scheme, and results corresponding to side loading scenario are subsequently
discussed. The results highlight the influence of in-nozzle random side loads on the roll, pitch, yaw,
and translational dynamics of a rigid-body rocket model. © 2010 American Institute of Physics.
�doi:10.1063/1.3457887�

I. INTRODUCTION

Given the economics of rocket launch and the need for
higher and more reliable dynamic performance, modern
rockets are typically designed to achieve high thrust to
weight ratios. This objective is often met using advanced
nozzle design modifications, including use of high nozzle
area ratios, reduced divergent section lengths, and optimized
nozzle contours �e.g., TOC, TOP, CTP, etc.1�. Although such
nozzle designs theoretically predict higher vacuum perfor-
mance, there is a significant performance trade-off associated
with these rocket nozzles at sea-level operating conditions. It
has been frequently reported1–3 that supersonic flow in such
nozzles tends to be overexpanded, which causes it to un-
steadily detach/reattach itself to the nozzle wall. This conse-
quently leads to generation of random nozzle side/lateral
loads,4–7 which are often perilous in nature as they could not
only catastrophically affect the vibroacoustic response of
rocket, but also affect the safety margins associated with the
transient or first-stage of its attitude. In large engines, side-
load magnitudes can be extremely large; for example, loads
on the order of 250 000 pounds were typically observed dur-
ing low altitude flight of the Apollo Program’s Saturn V
rockets.7 Indeed, minimizing and designing to accommodate
potentially catastrophic side loading represents an essential,
long-standing design task within the rocket design commu-
nity.

Supersonic flow separation in a rocket nozzle and the
associated side-load phenomena have been extensively in-
vestigated both computationally and experimentally over the
past five decades. It is well-known1,8,9 that during overex-
panded supersonic nozzle flow conditions, i.e., when Pe

�nozzle exit pressure� �Pa �altitude-dependent atmospheric
pressure�, flow separation involving complex, three-
dimensional, and mostly unsteady shock wave boundary
layer interactions �i.e., SWBLIs� occurs to compensate for
the adverse pressure gradient in the flow direction. This con-
sequently generates large randomly fluctuating lateral forces
on the nozzle structure. Turbulent SWBLI remains an exten-
sively studied problem, both theoretically/computationally
and experimentally �refer to Chapman et al.,10 Zukoski,11

Dolling and Murphy,12 Sinha et al.,13 Polivanov,14 etc.�,
where investigations where performed to study SWBLIs in
supersonic flows under the presence of geometrical nonlin-
earity or discontinuity �e.g., presence of a ramp, step, etc. in
flow field�, capture unsteady interactions and its affect on
instantaneous pressure fluctuations, and predict/analyze
separation zone geometry for various flow and wall cooling
patterns. With regard to flow separation and side loads in
rocket nozzles, Östlund et al.1,4 provide comprehensive re-
views of the state of the art, and emphasize the importance of
three distinct side-load generation mechanisms: �a� random
pressure variations due to free shock separation �FSS�, �b�
shock transitions, i.e., FSS↔RSS �restricted shock separa-
tion, where the separated boundary layer reattaches itself
downstream of the separation point to form a recirculation
zone�, and �c� aeroelasticity, which further amplifies the side
loads due to closed-loop fluid-structural vibroacoustic re-
sponse. Original work on these features has been reported,
e.g., by Onofri and Nasuti,15 Shimizu et al.,16 Frey and
Hagemann,17,18 Pekkari,19 and Schwane and Xia.20

Although work on rocket dynamics and control consti-
tute vast, long studied areas of research �see, e.g., Refs.
21–27�, the important question of attitude/ascent dynamics
of rockets subject to in-nozzle side loads, surprisingly, re-
mains open. Likewise, vibration control and stability ofa�Electronic mail: rkeanini@uncc.edu.
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launch vehicles subject to side loading remains poorly
served. It is clear that the development of such control-
oriented rocket dynamics models entails an embedding of a
fairly accurate description of side-load generation phenom-
enon, which is a challenging task given the dependence of
side loads on a variety of inter-dependent interactions such
as internal and external flow patterns, nozzle geometry, am-
bient conditions, fluid-structure interaction, etc. Although de-
tailed CFD modeling approaches16,20 have been investigated
to yield reasonably accurate predictions of separation point,
wall pressure distribution, and nozzle side loads, such mod-
els, being computationally intensive, render the synthesis of
fast and reliable controllers difficult. Thus, significant re-
search opportunities exist for development of accurate finite-
dimensional system-level models suitable for studying the
effects of random side loads on rocket attitude dynamics, as
well as investigation of the influence of side loads on the
stability and elastic and rigid-body response of rockets as
they move along their launch trajectory.

The present study has two objectives. First, a simple, yet
realistic model of rocket dynamics is sought which takes into
account the effects of stochastic, altitude-dependent, in-
nozzle side loads. The model will be used to study the influ-
ence of these loads on rocket center-of-mass dynamics, sta-
bility, and flight trajectory. Given the simplicity of the model,
it is anticipated that it could provide a basis for development
of, e.g., robust trajectory control strategies and/or structural
vibration suppression techniques, particularly during low al-
titude flight when side loading can be significant.

The second objective of this work centers on develop-
ment of a simple, physically realistic model of random side-
load generation �especially under FSS regime� and evolution
during over-expanded low altitude flight. It is clear that
knowledge of reasonably accurate separation location and
separation criteria will facilitate the development of these
physics-based side-load prediction models. A number of
criteria1,3,28,29 have been proposed in past for predicting the
nominal FSS point. The side-load prediction model presented
in this work is an extended modification of Keanini and
Brown,29 where simple, yet physics-based, scale analyses of
transverse momentum transport across the separating bound-
ary layer have been used to derive separation criteria for
time-average turbulent SWBL pressure fluctuations in over-
expanded nozzles operating under FSS regime. The proposed
model focuses on the random shape and motion of the in-
stantaneous in-nozzle boundary layer separation line, and in
contrast to existing statistically-based models, requires rela-
tively little experimental or numerical data on the separation-
zone wall pressure distribution.

In brief overview, the paper first presents the rocket dy-
namics model. The proposed model uses a control volume
approach, accounts for six degrees of coupled rigid body
translational and rotational motion, incorporates a simple,
altitude-dependent model of external aerodynamic loading,
and accounts for in-nozzle side loads. The model for random,
altitude-dependent side loads is then described. Here, a scal-
ing argument is presented indicating that random, spatially
varying nozzle-wall pressure distributions immediately up-
and down-stream of the instantaneous, azimuthally-varying

boundary layer separation line are small relative to the com-
paratively large, altitude-dependent, mean downstream pres-
sure. This result in turn allows straightforward calculation of
the instantaneous side load, given an instantaneous realiza-
tion of the random separation line shape. It is shown that the
model provides straightforward, analytical explanations for
several well known side-load statistical properties.

The rocket dynamics model is then used to study the
stochastic response of sounding-rocket-scale launch vehicles
subject to low altitude random side loads. Although side
loads appear only during the earliest portion of flight, their
influence on subsequent evolution of pitch, yaw, and lateral
displacement is significant; individual realizations of random
rocket motion are thus described, as well as ensemble aver-
aged translational and rotational rocket dynamics. Finally,
the paper closes with suggestions for future work.

II. ATTITUDE DYNAMICS MODEL OF A RIGID ROCKET

Since the primary objective of this research is to study
the influence of nozzle side loads on rocket launch dynamics,
a canonical rigid-body rocket model is considered, where the
variable-mass and flow dynamics are captured in a compre-
hensive manner using control volume formulation. Figure 1
illustrates the geometrical description of rocket model along
with the forces acting on it. The rocket is subjected to a
deterministic, time-dependent aerodynamic load, a time-
varying deterministic thrust load, and a stochastic in-nozzle
side load. The following assumptions are made during the
course of model development.

• Rocket body is axisymmetric at all times.
• The internal flow of burnt products is axisymmetric

and steady.
• The instantaneous mass center lies on the longitudinal

axis �i.e., the axis of symmetry� at all times and does
not undergo significant variation from its initial con-
figuration.

• The line of action of aerodynamic load is along the
longitudinal axis of symmetry, i.e., ignore the effects
of variable angle of attack �since the primary focus is
to investigate the effects of nozzle side loads on rocket
dynamics�.

• Neglect the effects of stochastic wind loads on rocket
dynamics.

• The exhaust gas flow is axisymmetric, uniform, and
steady.

Using Reynolds transport theorem and Newton–Euler’s mo-
mentum equation for a control volume accelerating in a non-
inertial frame of reference, one gets

F� S + F� B =
�

�t
�

CV
v��dV + �

CS
v���v� . dA� �

+ �
M

�a�o + 2��� � v�� + ��̇ � r� + �� � ��� � r���dM .

�1�

Here, F� S and F� B denote all the surface and body forces acting
on the control volume of the rocket. �, v� , and r�, respectively,
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denote the instantaneous density, velocity, and position fields
�relative to the control volume� for the flow of combustion
products. r� specifically denotes the distance of an infinitesi-
mal fluid particle from the instantaneous center of mass O,
whereas, �� denotes the instantaneous angular velocity of the
body-fixed coordinate axes attached to the rocket at its center
of mass O. a�o denotes the acceleration of the center of mass
O of the rocket with respect to an inertial frame of reference
�i.e., XYZ in Fig. 1�. Given O as the instantaneous center of
mass of rocket �i.e., �Mr�dM =0� where the body-fixed refer-
ence frame is attached and the assumption of steady internal
flow of burnt products �i.e., �� • � /�t�0�, Eq. �1� could be
further simplified as

F� S + F� B − �
CS

v���v� . dA� � − �
M

2��� � v��dM = Ma�o. �2�

The surface and body forces acting on the rocket can be
readily expressed as

F� S = F� A + �pe − pa�Aei� + Fsyj� + Fszk� ,

F� B = − MgI�. �3�

Here �I� ,J� ,K� � represent the unit vectors of the inertial coor-
dinate axes ”XYZ,” while �i�, j� ,k�� represent unit vectors of
the body-fixed coordinate axes “xyz” with origin at O �the
rocket’s instantaneous center of mass�, as depicted in Fig. 1.
Also, pe is the gas pressure at nozzle exit plane and pa is the
ambient pressure. Recognizing the need to emphasize the
dynamic influence of in-nozzle stochastic side loads Fsy and
Fsz, we seek a simple though qualitatively reasonable model
of the instantaneous aerodynamic load �F� A� as

F� A = −
1

2
CD�a�ẋo

2 + ẏo
2 + żo

2�ARi�. �4�

Thus, the aerodynamic load on the rocket is primarily ap-
proximated as a drag force with its line of action coinciding
with the longitudinal axis of symmetry �or the x-axis of the
body-fixed coordinate frame�. Although precise or detailed
effects of the angle of attack are not captured by the above-
mentioned aerodynamic load model, the Mach number-
dependent drag-coefficient CD �refer to Fig. 2 �Ref. 30�� and
the instantaneous changes in the center of mass velocity may
serve as useful indicators for analyzing the effects corre-
sponding to variable angle of attack.

Using the mass conservation principle, it is easy to ob-
tain the rate at which mass is being depleted from the rocket
control volume

dM

dt
= − �

CS
�v� . dA� � . �5�

Since the rocket loses mass only through the nozzle exit area
�Ae�, Eq. �5� could be written as

dM

dt
= − �

Ae

��v� . dA� � . �6�

Using the assumption of steady axisymmetric exhaust flow
and the axisymmetry of rocket nozzle, Eq. �6� yields an ex-
pression for the rate of mass loss from the rocket

Ṁ = − �e�vex�Ae. �7�

The above expression for mass loss rate encapsulates the
assumption that the density of exhaust gas ��e� does not
change appreciably over the nozzle exit plane. vex is the
magnitude of exhaust gas velocity relative to rocket body

FIG. 1. �Color online� Geometrical description of rigid-
body rocket model.
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computed at the nozzle exit plane along the x-direction �i.e.,
the longitudinal axis of the rocket� of the body-fixed refer-

ence frame. Note Ṁ is constant if the flow through nozzle
throat is choked. Using Eqs. �3�, �4�, and �7�, Eq. �2� could
be modified to get

−
1

2
CD�a�ẋo

2 + ẏo
2 + żo

2�ARi� + �pe − pa�Aei� + Fsyj� + Fszk� − MgI�

+ �Ṁ�vexi� − 2���
M

v�dM = M�ẍoI� + ÿoJ� + z̈oK� � . �8�

Using Reynolds transport theorem, the Coriolis term in Eq.
�8� could be expanded to obtain

−
1

2
CD�a�ẋo

2 + ẏo
2 + żo

2�ARi� + �pe − pa�Aei� + Fsyj� + Fszk� − MgI�

+ �Ṁ�vexi� − 2��	 �

�t
�

CV
�r�dV + �

CS
�r��v� . dA� �
 = M�ẍoI�

+ ÿoJ� + z̈oK� � . �9�

Again, under the assumption of steady internal flow and neg-
ligible variations in center of mass from its initial configura-
tion, Eq. �9� reduces to the following form:

−
1

2
CD�a�ẋo

2 + ẏo
2 + żo

2�ARi� + �pe − pa�Aei� + Fsyj� + Fszk�

− MgI� + �Ṁ�vexi� − 2�� �− �Ṁ��L − b�i�� = M�ẍoI� + ÿoJ�

+ z̈oK� � . �10�

Expressing the angular velocity �� in body-fixed coordinate
frame as �� =�xi�+�yj�+�zk� and introducing the Eulerian roll
���—pitch ���—yaw ��� transformation from �i�, j� ,k�� refer-
ence frame to the inertial �I� ,J� ,K� � frame

� i�

j�

k�
� = 
 cos � sin � 0

− sin � cos � 0

0 0 1
�
cos � 0 − sin �

0 1 0

sin � 0 cos �
�

�
1 0 0

0 cos � sin �

0 − sin � cos �
�� I�

J�

K�
� , �11�

the following three scalar governing equations for center-of-
mass dynamics of rocket could be obtained:

X-motion

Mẍo = ��pe − pa�Ae + �Ṁ�vex − 0.5CDAR�a�ẋo
2 + ẏo

2

+ żo
2��cos � cos � − Mg − �Fsy + 2�Ṁ��L

− b��z�cos � sin � + �Fsz − 2�Ṁ��L − b��y�sin � , �12�

Y-motion

Mÿo = ��pe − pa�Ae + �Ṁ�vex − 0.5CDAR�a�ẋo
2 + ẏo

2 + żo
2��

��cos � sin � + sin � sin � cos �� + �Fsy + 2�Ṁ�

��L − b��z��− sin � sin � sin � + cos � cos ��

− �Fsz − 2�Ṁ��L − b��y�sin � cos � , �13�

Z-motion

Mz̈o = ��pe − pa�Ae + �Ṁ�vex − 0.5CDAR�a�ẋo
2 + ẏo

2 + żo
2��

��sin � sin � − cos � sin � cos �� + �Fsy + 2�Ṁ�

��L − b��z��cos � sin � sin � + sin � cos ��

+ �Fsz − 2�Ṁ��L − b��y�cos � cos � . �14�

It is evident from Eqs. �12�–�14� that in-nozzle stochas-
tic side loads could significantly influence the translational
dynamics of a rocket during its attitude. Also, it is to be
noted that the Euler angles �� ,� ,�� in these equations time-

FIG. 2. �Color online� A typical representation of drag
coefficient �CD� vs Mach number for a rocket �Ref. 30�.
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varyingly depend on the angular velocity �� , which further
highlights the coupling between the translational and rota-
tional �i.e., roll, pitch, yaw� motions of rocket during its at-
titude. Using the rotation matrices, one could readily obtain
the following relationship between the components of angu-
lar velocity in body-fixed reference frame and the time rate
of change in Euler angles

��x

�y

�z
� = 
 cos � sin � 0

− sin � cos � 0

0 0 1
�
cos � 0 − sin �

0 1 0

sin � 0 cos �
���̇

0

0
�

+ 
 cos � sin � 0

− sin � cos � 0

0 0 1
��0

�̇

0
� + �0

0

�̇
�

or ��x

�y

�z
� = 
 cos � cos � sin � 0

− cos � sin � cos � 0

sin � 0 1
���̇

�̇

�̇
� . �15�

It is clear from Eq. �15� that a unique correspondence exists
between the time rate of change in Euler angles and the
components of angular velocity as long as the above trans-
formation matrix is nonsingular �i.e., unless �= �	 /2�. For
the instant when �= �	 /2, the time rates of Euler angles are
obtained using the following equations:

�̇ = ��x
2 + �y

2,

�̇ =
�y�̇x − �x�̇y

�x
2 + �y

2 ,

�̇ = ��z − �̇�sgn�sin ��, � � �−
	

2
,
	

2
� . �16�

Using generalized Kane’s equations, Eke et al.27,31 de-
rived the following vector equation for the rigid-body rota-
tional dynamics of a variable mass system.

I���̇ + �� � �I��� � +
dI�

dt
�� + �

CS
��r� � ��� � r����v� . dA� �

+
�

�t
�

CV
��r� � v��dV + �

CV
���� � �r� � v���dV

+ �
CS

��r� � v���v� . dA� � = M� ext. �17�

Here, I� denotes the principal inertia tensor about the body-
fixed axes �xyz�, which are also the principal axes. Using the
axisymmetry of rocket body, it is assumed Iyy = Izz= I. The
computation of the surface and volume integral terms in Eq.
�17� could be readily done as explained subsequently.

The position vector �as shown in Fig. 1� from the instan-
taneous mass center O to a generic fluid particle leaving
nozzle exit area �Ae� could be expressed as

r��Ae
= − �L − b�i� + r cos 
j� + r sin 
k� .

The infinitesimal fluid area element at nozzle exit could be
expressed as dA� =−rdrd
i�. The exhaust gas velocity profile
�relative to rocket body� over the nozzle exit plane �Ae� is
considered to be31

v� �Ae
= − vexi� + ��xr

2

Re
− �xr��− j� sin 
 + k� cos 
� . �18�

The j� and k� components in the above expression �similar to
those introduced by Tran and Eke31� account for the effects
due to whirling of fluid particles as the rocket �primarily
assumed to be a cylindrical body� spins or rolls about its
longitudinal axis �i.e., the x-axis of the body-fixed reference
frame�. The term �xr

2 /Re assumes parabolic distribution of
azimuthal velocity field as the fluid particles escape/cross the
nozzle exit plane. This is a simplified approximation that
accounts for the fact that the fluid particles on the longitudi-
nal axis of symmetry �i.e., x-axis� do not whirl, while those
particles at the nozzle surface will whirl with a tangential/
peripheral azimuthal velocity of �xRe. Note vex is not a func-
tion of 
, owing to axisymmetry, and is also assumed to be
uniform/constant over the nozzle exit plane. Also, density �;
is assumed to be uniform over the nozzle exit plane. Using
these expressions, the surface integral terms in Eq. �17�
could be readily evaluated to yield the following expres-
sions:

�
CS=Ae

��r� � v���v� . dA� � = −
�Ṁ�
10

�xRe
2i�. �19�

�
CS=Ae

��r� � ��� � r����v� . dA� � = �Ṁ����L − b�2 + 0.25Re
2�

���yj� + �zk�� + 0.5Re
2�xi�� . �20�

For the volume integral term �i.e., the sixth term in Eq.
�17��, the contributions from geometrical nonuniformities in
rocket body and nozzle sections are neglected and the rocket
combustion chamber is primarily treated as a cylinder of ra-
dius Ri with an axisymmetric internal flow field having a
velocity profile �relative to rocket body� similar to Eq. �18�
�Ref. 31�

v� = − vxi� + � r

Ri
− 1��xr�− j� sin 
 + k� cos 
�; vx � f�
� .

�21�

The position vector from the instantaneous mass center O to
a generic fluid particle contained within the rocket body is
given by r�= x̂i�+r cos 
j�+r sin 
k�. The infinitesimal fluid vol-
ume element could be expressed as dV=rdrd
dx̂. Using
these expressions, the volume integral term �i.e., the sixth
term in Eq. �17�� could be evaluated to yield the following
expression:
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�
CV

���� � �r� � v���dV = −
�Ṁ�LRi

4

10vexRe
2 ��x�zj� − �x�yk�� .

�22�

It is clear that this volume integral term in fact captures the
gyroscopic torques that the rocket experiences during its at-
titude. Using Eqs. �19�, �20�, and �22� and the assumption of
steady internal flow, Eq. �17� could be simplified to yield the
following three governing equations for the rotational dy-
namics of rocket during its attitude:

Ixx�̇x + �İxx +
2

5
�Ṁ�Re

2��x = 0, �23�

I�̇y + �Ixx − I��x�z + İ�y + �Ṁ���L − b�2 + 0.25Re
2��y

−
�Ṁ�LRi

4

10vexRe
2�x�z = M� ext · j�, �24�

I�̇z − �Ixx − I��x�y + İ�z + �Ṁ���L − b�2 + 0.25Re
2��z

+
�Ṁ�LRi

4

10vexRe
2�x�y = M� ext · k� . �25�

Since the line of action of aerodynamic load is assumed to
coincide with the longitudinal axis �i.e., x-axis of body-fixed

frame� through the center of mass O of the rocket, the only
force that contributes to the external moment term M� ext in
Eqs. �24� and �25� is the in-nozzle stochastic side load. The
moment due to these stochastic side loads could be computed
as

M� ext = − �L − b�i� � �Fsyj� + Fszk�� . �26�

Thus, Eqs. �12�–�16� and �23�–�26� together constitute the
governing equations for translational and rotational dynam-
ics of a variable-mass rigid-rocket during its attitude. It is
clear from these equations that the stochastic lateral loads on
the nozzle walls could significantly influence the dynamic
response of rocket, which could be undesirable or perilous.
The subsequent section discusses the mathematical model for
computation of these stochastic side loads �i.e., Fsy and Fsz�
on the rocket nozzle.

It is evident from the governing equations of rocket
model that a fairly accurate description of altitude-dependent
atmospheric pressure and density is needed for capturing the
overexpanded flow dynamics. Thus, a National Aeronautics
and Space Administration �NASA� atmospheric model is
adopted from literature32 and embedded in the above govern-
ing equations. The NASA atmospheric model for ambient
pressure, temperature, and density is given by the following
equations:

pa�in kPa� =�101.29�Ta + 273.1

288.08
�5.256

, xo � 11000 m�i.e. meters�

22.56e�1.73−0.000157xo�, 11000 m � xo � 25 000 m,

2.488�Ta + 273.1

216.6
�−11.388

, xo � 25 000 m �
Ta�in ° C� = �15.04 − 0.006 49xo, xo � 11 000 m

− 56.46, 11 000 m � xo � 25 000 m,

− 131.21 + 0.002 99xo, xo � 25 000 m
�

�a�in kg/m3� =
pa

0.2869�Ta + 273.1�
.

III. NOZZLE SIDE-LOAD MODEL FOR FSS REGIME

Broadly speaking, the origin of side loads on rocket
nozzles can be traced to one or more of the following fea-
tures: steady and/or time varying asymmetries in the nozzle
flow and pressure fields, steady and/or time-varying asym-
metries in nozzle shape, and external aerodynamic loading.
Focusing on the first case, the following chain of physical
processes can create side loads.

A. Side load physical processes

During low altitude flight, ambient pressure can, and of-
ten does, exceed near-exit pressures within the nozzle, i.e.,
the nozzle flow can be overexpanded. Under these condi-
tions, excess external pressure can force ambient air up-
stream into the nozzle, where the incoming flow is confined
to the low inertia near-wall region. This counter-flow contin-
ues upstream to a locus of points, the nominal boundary
layer separation line, s�� , t� �as depicted in Fig. 3�, at which
a balance between �decaying� upstream inertia and down-
stream boundary layer inertia causes separation of the latter.
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The separating boundary layer, in turn, forms a virtual turn-
ing corner along the nozzle wall, triggering formation of a
three-dimensional oblique shock structure within the external
supersonic, nonboundary layer flow. The shape of s�� , t� is
random and asymmetric. Thus, due to the pressure jump
across the associated oblique shock, a net, nominally-radial
pressure force, the side load, Fr�t� (boldface font represents
vector quantity), acts on the nozzle wall. Due to the random,
time-varying shape of s�� , t�, the instantaneous magnitude,
A�t�= �Fr�t��=�Fsy

2 +Fsz
2 , and direction, �, of Fr likewise vary

randomly in time. Two distinct shock-boundary layer sepa-
ration structures, the FSS and RSS structure, appear to play
prominent roles in nozzle side loading.1,4–6 Although the
model proposed here applies to side loads associated with the
FSS structure, a similar approach can be adapted to side
loading associated with RSS structures.

Current side-load models can be characterized as one of
two types, phenomenological models which attribute side
loading to, e.g., a fixed boundary layer separation line within
the nozzle,33 or, more recently, semiempirical statistical
models4,34,35 which require experimentally measured correla-
tions of the nozzle wall pressure field. Dumnov34 introduced
the latter approach in 1996 and his ideas now dominate this
area of research.

The objectives of this section are threefold. First, we
wish to propose an alternative probabilistic approach to
Dumnov for computing side loads. As described here, the
present approach focuses on the statistical behavior of the
random separation line, s�� , t�. Second, closure of existing
probabilistic side-load models requires either complex ex-
perimental measurements of nozzle wall pressure distribu-
tions, or development of high-level compressible flow simu-
lations capable of capturing complex three-dimensional,
unsteady shock boundary layer interactions.1,35,36 We wish to
develop a relatively simple, physically consistent model of
separation line motion and side loading that circumvents the

heavy experimental and numerical modeling demands asso-
ciated with present approaches. Specifically, we propose a
purely analytical solution to the closure problem. Third,
while altitude effects play a crucial role in side-load evolu-
tion and behavior, this important feature has not been exam-
ined. Thus, we incorporate this effect within the proposed
model.

The proposed side-load model requires statistical infor-
mation on two random features: �i� the instantaneous azi-
muthal pressure distribution in the vicinity of the instanta-
neous in-nozzle boundary layer separation line, s�� , t�, and
�ii� the instantaneous, azimuthally varying shape of s�� , t�
�refer to Figs. 3 and 4�.

With regard to the first feature, scaling arguments below
indicate that at any instant, spatial pressure fluctuations im-
mediately upstream and downstream of the instantaneous
separation line are small relative to associated �spatially uni-
form� mean pressures. At first glance, this appears to contra-
dict the well known observation34 that pressures near the
separation line exhibit significant random variations in both
the axial and azimuthal directions. However, based on our
scaling analysis, we argue that these observations reflect ran-
dom fluctuations in the separation line shape, taking place
within near-uniform upstream and downstream wall pressure
fields.

Comparing experimental requirements necessary for clo-
sure of Dumnov’s model34 versus those required for closure
of the present model, since Dumnov34 ignores separation line
dynamics, his approach again requires experimentally or nu-
merically generated data on the axially and azimuthally vary-
ing nozzle wall pressure distribution �obtained in the vicinity
of the boundary layer separation zone�. The present ap-
proach, by contrast, exploits the well-known observation37–40

that local separation line dynamics exhibit fairly universal
statistical characteristics, independent of the shock generator,
nozzle type, and separation location. �Here, and with refer-

FIG. 3. Schematic of instantaneous boundary layer separation line shape,
s�� , t�. The time, or equivalently, altitude-dependent mean separation line
location �along the nozzle’s longitudinal axis� is denoted as xs�H�t��, where
H�t� is the instantaneous rocket altitude. The corresponding nozzle radius is
R�xs�.

∆φ

�

�

x
x

s

s(
φ

φ i

i,t)

L
s

φ

(H
(t

))

R
(H

(t
))

FIG. 4. Separation line model: the mean separation line position, xs�H�t��,
moves down the nozzle axis, x on the slow time scale associated with
vertical rocket motion. By contrast, axial separation line motion about
xs�H�t��, at any angular position, �i, is random, and takes place on a much
shorter time scale; rapid axial motion, in addition, is confined to the nominal
shock boundary layer interaction zone, denoted by Ls. Pressures upstream
�Pi� and downstream �P2� of the instantaneous separation line, s�� , t�, are
assumed to be spatially uniform within Ls, but do vary with rocket altitude,
H�t�.
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ence to Fig. 4, local refers to separation line motion observed
within a thin rectangular region of �say� lateral width R
�
and axial length Ls, where R and Ls are defined below and in
the caption.� Presuming that the statistics of separation line
motion remain nominally independent of azimuthal position
�within circular nozzles�, the experimental effort required for
closure here thus appears to be significantly less; again, we
use simple analytical modeling in order to achieve closure.

B. Probabilistic side-load model

Considering the instantaneous force vector produced by
asymmetric boundary layer separation, Fs�t�, expressed as a
sum of radial and axial components

Fs�t� = Fr�t� + Fx�t� , �27�

we note the following important experimental and numerical
observations concerning the side load, Fr, �within rigid, axi-
symmetric nozzles�:

�a� the probability density of the random amplitude, A
= �Fr�, is a Rayleigh distribution34,35 and

�b� the random instantaneous direction, �, of Fr is uni-
formly distributed over the periphery of the nozzle, or
p����=1 /2	, where p� is the pdf of the side-load
direction.35

In this subsection, we adapt a discussion from Ref. 41 to
show that both observations can be explained using a simple
statistical model of random side loads. Knowing A and �, it
is trivial to express the instantaneous side-load components
in body-fixed y- and z-directions as Fsy =A cos � and Fsz

=A sin �. The following assumptions were made regarding
the statistics of Fsy and Fsz:

�i� Fsy and Fsz are independent, Gaussian random vari-
ables,

�ii� �Fsy�=0 and �Fsz�=0, and
�iii� ��Fsy − �Fsy��2�= ��Fsz− �Fsz��2�=�2,

where, assuming ergodicity, � · � denotes either an ensemble
or time average. As shown in Sec. IV, the first two assump-
tions can be derived from the model of separation line dy-
namics presented there and in Sec. III, the last assumption
reflects the presumption that the random flow features under-
lying side loading are azimuthally homogeneous.

Thus, writing Fsy and Fsz as, Fsy = Ȳ =A cos � and Fsz

= Z̄=A sin �, the joint probability density associated with Fsy

and Fsz can be expressed as

pȲZ̄�Ȳ,Z̄� = pȲ�Ȳ� · pZ̄�Z̄� =
1

2	�2exp�−
Ȳ2 + Z̄2

2�2 � . �28�

Following Ref. 41, we restate pȲZ̄ in terms of A and � as,

pA� = �J�pȲZ̄�Ȳ,Z̄� , �29�

where pA��A ,�� is the joint pdf for the random amplitude
and direction of Fr, and where the Jacobian determinant is
given by

�J� = �
�Ȳ

�A

�Ȳ

��

�Z̄

�A

�Z̄

��

= A� . �30�

Thus,

pA��A,�� =
A

2	�2exp�−
A2

2�2� = � 1

2	
�	 A

�2exp�−
A2

2�2�

= p����pA�A� , �31�

where

p���� =
1

2	
, 0 � � � 2	 , �32�

is again the uniform probability density underlying the ran-
dom direction � and

pA�A� =
A

�2exp�−
A2

2�2� , �33�

is the Rayleigh distribution for the amplitude A.
It is thus clear that the simple assumptions �i�–�iii� above

provide a basis for explaining and modeling known side-load
statistical properties. In addition, this appears to be the first
analytical, i.e., nonexperimental and nonnumerical, explana-
tion of the observations34,35 noted in �a� and �b� above.

C. Model closure: Separation line shape

In order to close the statistical description of random
side loads, the parameter � in Eqs. �31� or �33� must be
determined. In this section, we

�i� relate � to �A2� and
�ii� propose a model of separation line dynamics.

The second task rests on simple scale analyses of the
fluid dynamical features extant within, and near, the shock-
boundary layer interaction zone, as well as introduction of
simple assumptions on the statistics of separation line mo-
tion. Given the separation line model, the side-load model
can then be closed, as described in Sec. IV.

The parameter � can be related to �A2� by first noting
from the statistical model of the side-load components Fsy

and Fsz, that

��Fsy − �Fsy��2� = �Fsy
2 � = �2,

��Fsz − �Fsz��2� = �Fsz
2 � = �2. �34�

Since, A2=Fsy
2 +Fsz

2 , we get

�A2� = �Fsy
2 � + �Fsz

2 � = �2 + �2 = 2�2 �35�

or

� =
1
�2

��A2� . �36�

Equation �36� could also have been directly obtained using
standard formulae for the Rayleigh distribution41 �A�
=��	 /2, var�A�=�2�4−	� /2, and var�A�= �A2�− �A�2.
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1. Model of separation line motion

Considering the random axial �streamwise� motion of
the boundary layer separation line, we take advantage of a
separation in time scales, �R and �s, associated, respectively,
with the slow downstream motion of the line’s mean posi-
tion, xs�t�=xs�xo�t�=H�t��, and the rapid motion of the sepa-
ration line about xs�t�. The mean position of the separation
line moves downstream in response to the decaying external
ambient pressure; thus, �R is estimated as �R=
Ha /VR,
where 
Ha is the characteristic incremental altitude over
which significant ambient pressure changes occur and VR is a
characteristic rocket speed. By contrast, �s corresponds to the
lower end of the frequency spectrum associated with large
amplitude, random axial motion of the separation line about
xs; this lower end ranges from approximately 10 to 300 Hz
while the amplitude of random axial motion, delimiting the
nominal shock-boundary layer interaction zone, ranges from
approximately 1 to 5 cm.39

Thus, since �R��s, then over time intervals 
t=O��R�,
well defined statistical features associated with the fast sepa-
ration line motion about xs�t� can, at any given instant, be
reliably determined. Given this difference in time scales, we
propose the following model of separation line motion:

�i� Assume that at any altitude H=H�t�=xo�t�, a station-
ary, time �or equivalently, ensemble� average separa-
tion line shape, s̄�H�, exists, where averaging is car-
ried out over intervals T that are long relative to �s,
but short relative to �R.

�ii� Assume that the mean separation line shape, s̄�H�, is
independent of the azimuthal angle �. This is a rea-
sonable assumption for FSS within nominally sym-
metric nozzles that are attached to well-designed com-
bustion chambers that do not produce significant
asymmetric combustion.

�iii� At any altitude H, or equivalently, any time t, dis-
cretize the instantaneous separation line shape into N
equiangular increments, 
�. As shown in Fig. 4, we
define a circular reference line passing around the in-
ner periphery of the nozzle, where the reference line
coincides with the mean axial separation line location,
xs�H�t��. In addition, define N differential areas


Ai = R�xs�t��s��i,t�
�, i = 1,2, . . . ,N , �37�

where R�xs�t�� is the nozzle inner radius at xs�t�
=xs�H�t��, and s��i , t� is the instantaneous axial posi-
tion of the separation line at �=�i, relative to the
�time-varying� reference line.

�iv� Define, at any given altitude H, a shock-boundary
layer interaction zone of axial length Ls which encom-
passes the axial region over which the separation line
moves. Assume that within this zone pressures up-
stream and downstream of the instantaneous separa-
tion line, Pi�t�= Pi�xs�H�t��� and P2�t�= P2�H�t��, re-
spectively, are independent of � and only depend on
altitude H=H�t�.

In order to justify these assumptions, and as an
important aside prior to listing the last two model as-
sumptions, we use scaling to argue that spatial pres-

sure variations both up- and downstream of xs�t�,
within the nominal shock-boundary layer interaction
zone, are small relative to the respective �background,
slowly time varying� mean pressures, Pi�t� and P2�t�.

Considering first the upstream side of the instan-
taneous separation line, three potential sources of spa-
tial pressure variations can be identified: azimuthal
acoustic pressure modes within the upstream in viscid
supersonic flow, upstream transmission of acoustic
disturbances within subsonic portions of the turbulent
boundary layer, and dynamic pressure produced by
the turbulent boundary layer. Pressure variations pro-
duced by azimuthal acoustic modes are likely minimal
since these modes cannot propagate �azimuthally�
more than a distance of order O�Ls /Mi� �where Mi is
the free stream Mach number at the incipient separa-
tion point�.

With regard to the second source, while Liep-
mann et al.42 observed that acoustic disturbances
travel no more than one or two boundary layer thick-
nesses upstream within turbulent compressible bound-
ary layers, in relatively thick boundary layers, such
disturbances could produce spatial pressure variations
on the upstream side of the instantaneous separation
line. However, extending an argument given immedi-
ately below, since the maximum characteristic magni-
tude of these variations, 
p�, is small relative to the
characteristic pressure difference, P2− Pi across the
separation line �where the latter is used to calculate
side loads�, then even in cases where acoustic distur-
bances penetrate well upstream of the separation line,
for computational purposes, we can neglect the asso-
ciated pressure variation.

Finally, considering pressure variations due to
boundary layer turbulence, the ratio of turbulent pres-
sure variations to the mean pressure is on the order of

p� / P̄i=O�u�2 / Ū2�, where the latter, representing the
ratio of characteristic upstream random to mean ve-
locities, is small.

On the downstream side of the instantaneous
separation line, a large, subsonic, near-wall separation
zone exists.1,4,36 Acoustic pressure fluctuations at and
near the nozzle exit, as well as those within the sepa-
ration zone, can thus propagate upstream, and indeed,
these fluctuations are implicated as the primary source
of the low frequency, large amplitude separation line
motions noted above. �High frequency, small ampli-
tude jitter is also observed39 and appears to be pro-
duced by advection of vorticity through the foot of the
separation-inducing shock.� Since spatial pressure
variations upstream of the instantaneous separation
line appear to be small �as argued above�, we can use
the characteristic magnitude of the random down-
stream pressure fluctuations, 
p�, as a useful estimate
of the maximum pressure fluctuations extant within
the entire shock-boundary layer interaction zone.

An estimate for 
p� follows via two equivalent
routes: �i� focus on the axial dynamics of boundary
layer particles immediately downstream of the instan-
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taneous separation line and scale particle inertia
against the net axial pressure force29 or �ii� scale axial
inertia, �ut��2Ls /�s

2, against pressure, Px�
p� /Ls,
in the Navier–Stokes equations. Either approach leads
to


p�/P2 � 
p�/Pa � ��aLs/�s
2�/Pa � 1, �38�

where the downstream density and pressure, �2 and
P2, are approximately equal to �altitude-dependent�
ambient values, �a and Pa. Thus, over the boundary
layer-shock interaction zone, spatial pressure varia-
tions on either side of the instantaneous separation
line are small relative to the instantaneous �altitude
dependent� downstream mean, P2�H�t�� �and again,
are thus small relative to P2− Pi�.

�v� Returning to the model, we express the probability of
observing any given instantaneous separation line
shape, s�� , t�, as a joint probability density

ps = ps�s1,s2, . . . ,sN� , �39�

over the N-dimensional set of random variables de-
scribing the shape

�s1 = s��1,t�, s2 = s��2,t�, s3 = s��3,t�, . . . , sN

= s��N,t��

and assume that each member of the set
�s1 ,s2 ,s3 , . . . ,sN� is

�a�independent,
�b�Gaussian, and
�c�has the same �altitude-dependent� variance, var�si�

=�s
2=�s

2�H�.

Considering first assumption �a�, we expect that
under conditions where large downstream azimuthal
acoustic modes are not excited �such as those impli-
cated in tee-pee separation patterns,1,5 for example�,
this assumption is approximately valid. In addition,
this assumption leads to considerable mathematical
simplification. Assumption �b� is consistent with ear-
lier observations,4,43 while �c� appears reasonable,
again under conditions where nozzle shape and com-
bustion are nominally symmetric, and where down-
stream flow asymmetries are small. Taken together,
and as shown below, these assumptions lead to theo-
retical results, given in Eq. �46� below, that are con-
sistent with observed side-load statistical properties.

�vi� Finally, when moving from the discrete to continuous
limit, 
�→d�, and consistent with assumptions �va�
and �vc� above, we assume that the instantaneous
separation line, s�� , t�, is delta correlated in �

�s��,t�,s���,t��s = �s
2��� − ��� , �40�

where � · �s denotes an ensemble average over the
space of all separation line shapes.

D. Side-load statistical properties

Having proposed a statistical model of separation line
dynamics, we can now calculate side-load statistical proper-
ties, specifically ensemble averages of the lateral side-load
components, �Fsy�s and �Fsz�s, and importantly for present
purposes, the mean squared side-load amplitude, �A2�s.

Based on assumptions �va�—vc� above, the joint prob-
ability density, ps, associated with the instantaneous random
separation line shape is given by

ps�s1,s2, . . . ,sN� = �
I

pI =
1

�2	�s�N/2

�exp�−
s1

2 + s2
2 + . . . + sN

2

2�s
2 � . �41�

Expressing ps as the product of the N Gaussian pdfs, pI, I
=1,2 , . . . ,N, where each pI, given by

pI�sI� =
1

�2	�s
2
exp�−

sI
2

2�s
2� , �42�

is again associated with the independent random line dis-
placement, sI=s��I , t�.

Ensemble averages of the instantaneous side-load com-
ponents Fsy and Fsz then follow as:

�Fsy�H�t���s = R�H�t���Pi�H�t��

− Pa�H�t����
0

2	

sin ��s��,t��sd� �43�

and

�Fsz�H�t���s = R�H�t���Pi�H�t��

− Pa�H�t����
0

2	

cos ��s��,t��sd� , �44�

where we approximate the downstream pressure, P2�H�t�� as
the instantaneous ambient pressure, Pa�H�t��.29,36 In order to
evaluate these averages, express the kth realization of, e.g.,
Fsy

�k�, in discrete form as

Fsy
�k��s1,s2, . . . ,sN� = R�H�t���Pi�H�t�� − Pa�H�t���

��
I=1

N

s�k���I�sin��I�
� , �45�

where s�k���I� is the associated separation line displacement
at �I. Taking the ensemble average term by term, and noting
that

�sI�s = �
−�

� �
�

�

¯�
−�

�

sIps�s1,s2, . . . ,sN�ds1ds2 . . . dsN

= 0,

then leads to the result that ensemble averaged values of both
side-load components are zero
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�Fsy�H�t���s = 0, �Fsz�H�t���s = 0. �46�

The altitude-dependent average squared side-load amplitude,
�A2�H�t���s, is finally determined as follows:

A2�H�t�� = Fsy
2 �H� + Fsz

2 �H� = R2�H�t���Pi�H�t��

− Pa�H�t���2�	�
0

2	

s���cos �d�
2

+ 	�
0

2	

s���sin �d�
2�
or

A2�H�t�� = R2�H�t���Pi�H�t�� − Pa�H�t���2

�	�
0

2	 �
0

2	

s���s����cos�� − ���d�d��
 . �47�

Taking the average �A2�s, and using Eq. �40�, we get

�A2� = �A2�H�t��� = 2	�s
2R2�H�t���Pi�H�t�� − Pa�H�t���2.

�48�

Taking �s as the experimentally observed �nominal� length
of the shock interaction zone, Ls, the sideload model is
closed finally by using the right side of Eq. �48� in Eq. �36�,
yielding the parameter � in Eq. �31� ��or Eq. �33��.

IV. RESULTS AND DISCUSSION

The rocket dynamics model used for numerical experi-
ments corresponds to the translational and rotational equa-
tions of motion, Eqs. �12�–�14� and �23�–�25�. During the
side-loading period, 0� t�T, this nonlinear coupled system
is forced by random nozzle side loads. In order to simulate
any given side-load history, a three-step Monte Carlo ap-
proach is employed. First, at any instant t, the instantaneous
mean separation line location, xs�t�, is determined using an
approach outlined in Keanini and Browm.29 Thus, an ap-
proximate nozzle pressure ratio is first calculated as

NPR�t� =
Po

Pa�H�t��
=

Po

Pi

Pi

P2

P2

Pa�H�t��

= g�Mi�f�Mi,��c�t� , �49�

where g�Mi�= P0 / Pi, f�Mi ,��= Pi / P2, c�t�= P2 / Pa�H�t��, Pi

and P2 are pressures upstream and downstream of the
separation-inducing shock, � is the shock angle, and Mi is
the associated upstream Mach number. The implicit function
g�Mi� is obtained via the generalized quasi-one-dimensional
model of isentropic flow44 while f�Mi ,�� corresponds to the
pressure ratio function for oblique shocks based on Keanini
and Brown separation criteria.29 The function c�t� captures
the small down-stream pressure rise that drives flow within
the near-nozzle-wall recirculation zone; generalizing, e.g.,
the results from Keanini and Brown29 to the present case of
time-varying ambient pressure, we assume that c�t�=0.85.
Similarly, and consistent with a number of shock angle mea-
surements �see literature overview in Ref. 29�, we take the
shock/flow deflection angle ��15.2°. Again, using the well-
known shock relationship �see Eq. �50��, the turning/

deflection angle � can be easily expressed �especially for the
in viscid flow outside the separating boundary layer� as a
function of incipient Mach number Mi and the shock angle �
�Ref. 44�

tan � =
2 cot ��Mi

2 sin2 � − 1�
Mi

2�� + cos 2�� + 2
. �50�

Thus, given NPR�t� and turning angle �, Eqs. �49� and �50�
allow determination of the associated incipient upstream
Mach number, Mi=Mi�t�. Given Mi�t�, the corresponding
nozzle radius, R�t�, is determined using the area-Mach num-
ber relation for quasi-one-dimensional isentropic flow. Given
R�t�, xs�t�, then follows from the known nozzle geometry.

Second, given the instantaneous mean separation line
position, a single realization of the instantaneous separation
line shape, s�� , t�, is generated incrementally: at any given
angular position � j = j�2	�N−1, j=1,2 , . . . ,N, a separation
line displacement, 
sj =s�� j , t�, is determined by sampling
the cumulative distribution function associated with the dis-
placement amplitude density, Eq. �42�.

Third, once N independent displacements,
�
s1�t� ,s2�t� , . . . ,
sN�t��, are thus computed, associated in-
stantaneous side-load components, Fsy�H�t�� and Fsz�H�t��,
are calculated via single realization �nonaveraged� versions
of Eqs. �43� and �44�. �Note: the instantaneous rocket alti-
tude, H�t�, is determined via the vertical momentum Eq.
�12�; this in turn allows determination of the ambient pres-
sure, Pa�H�t��. In addition, the pressure Pi�t� is obtained us-
ing the quasi-one-dimensional isentropic relation for P0 / Pi.�

Model simulations were performed using MATLAB/

SIMULINK. Single realization time histories of side loading
and associated translational and rotational displacements
were obtained by numerically integrating the governing
equations using a fourth-order Runge Kutta algorithm.
Model parameters, given in Table I, are representative of
those associated with sounding rockets, e.g., the
Peregrine45–47 and Black Brant.48 This choice was guided by
various scaling arguments, all of which showed that side-
load effects on rocket dynamics become increasingly promi-

TABLE I. Model simulation parameters and values.

Parameters Values

Mass of rocket, M �at t=0� 1200 kg
Nozzle exit radius, Re 0.25 m
Nozzle throat radius 0.05 m
Radius of main rocket body, Ri 0.2 m
Nozzle divergent section angle 15°
Length of rocket, L 10 m
Location of center of mass of rocket from the apex, b 5 m
Moment of inertia about roll axis, Ixx �at t=0� 135 kg m2

Moment of inertia about yaw/pitch axis, I �at t=0� 10 000 kg m2

Combustion chamber pressure �stagnation pressure�, P0 7 MPa
Combustion chamber temperature �stagnation
temperature�, T0 3600 K
Polytropic exponent of exhaust gas 1.34
Gas constant for exhaust gas 355.47 J /kg m2

Polytropic exponent of ambient air 1.4
Gas constant for ambient air 287 J /kg K
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nent with decreasing rocket size. �The most straightforward
of these proceeds as follows: form the ratio of characteristic
side-load magnitude to characteristic thrust

Fs

�eue
2Ae

�
�Pa − Pi�2	Re�s

kPeMe
2Re

2 �
�s

kMe
2Re

,

where subscripts refer to values at the nozzle exit and where
Re is the nozzle exit radius. Here, we used Pa� Pt �where Pi

is the characteristic nozzle pressure immediately upstream of
the separation-inducing shock�, as well as Pe� Pa �which is
approximately true while the separation-inducing shock lies
within the nozzle�. Since Me

2 and �s are, in a order of mag-
nitude sense, relatively fixed for a range of rocket nozzle
sizes, then it is clear that relative side-load magnitudes in-
crease with decreasing rocket size.�

As soon as rocket ascends from sea-level, an oblique
shock system is generated within its exhaust nozzle due to
overexpanded flow condition �the isentropic nozzle flow exit
pressure being lower than the ambient atmospheric pressure
at sea-level, i.e., with NPR �=Po / pa� being approximately
70�. Due to adverse pressure gradient and nozzle geometry,
flow separation from nozzle walls also occurs just about the
same location as the shock. With increasing altitude �i.e.,
with increasing NPR�, the separation line and thus the shock
continue to move downstream of the nozzle �as illustrated in
Fig. 6�. It is to be noted Fig. 6�a� only represents approxi-
mate geometry of shock within the nozzle, where the radial
�i.e., R�H�t��� and the axial positions �i.e., xs�H�t��� are re-
lated to each other through nozzle geometry, thereby not cap-
turing or emphasizing the detailed structure of complex
shock-boundary layer interactions �refer to Ref. 1 for de-
tails�. The flow within the nozzle continues to be overex-
panded till an altitude of approximately 3.85 km. Once the
shock exits the nozzle �i.e., at an approximate altitude of
3.85 km�, the flow within the nozzle is fully isentropic—any
further discrepancy between the nozzle exit pressure and the

ambient pressure is compensated through a system of ob-
lique shock diamonds or expansion fans past the nozzle exit
plane. Since the nozzle flow is supersonic and fully isentro-
pic past �4 km altitude, the pressure information past exit
plane does not propagate upstream to the nozzle, and hence
has no influence on the in-nozzle side loads. So, even though
Fig. 7 illustrates that fully isentropic nozzle exit pressure
�after �4 km altitude� is lower than the ambient pressure
and continues to be so till an altitude of approximately 30
km, pressure variations due to oblique compression shock
diamonds in this zone of the flight �i.e., from �4 to 30 km�
do not affect the in-nozzle stochastic side-load generation
process. Thus, side loads are generated within the nozzle as
long as the separation line and shock are confined to its in-
terior.

Figure 5 shows a representative time history of both ran-
dom side-load components, Fsy�t� and Fsz�t�. Several features
can be noted. First, it is found that side-load magnitudes are
only one to two orders of magnitude smaller than the char-
acteristic thrust; �Fsy ,Fsz�=O�103 N�, while thrust computed
is of the order of 104–105 N. Thus, as anticipated �and as
will be shown�, side loads play a significant role in rocket
dynamics. Second, side loading takes place only at low alti-
tudes where ambient pressure remains high enough to force
outside air into the nozzle. �The length of the side-load pe-
riod, T, can be ascertained, e.g., from Fig. 11�b�, where it is
seen that random forcing of the yaw rate, �y, ceases at ap-
proximately 11 s.� Third, during the side loading period, a
slight decay in side-load magnitudes is apparent. This can be
explained by referring to nonaveraged versions of Eqs. �43�
and �44� along with Figs. 6 and 7: over 0� t�T, the pressure
difference, Pi�H�t��− Pa�H�t��, determining the side-load
magnitude drops by roughly 39% while the nozzle radius,
R�H�t��, increases by only 18%.

A representative set of single realization results, showing
time histories for: �i� position of the rocket’s center of mass,

FIG. 5. �Color online� In-nozzle stochastic side loads
�n� vs rocket vertical altitude �km�.
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�ii� center of mass translational velocity, and �iii� pitch, yaw
and roll rates are presented, respectively, in Figs. 8, 9, and
11. The sets of results shown correspond to a single numeri-
cal experiment and in all cases, for purposes of comparison,
fully deterministic time histories obtained with random side
loads turned off are also included. The initial conditions used
in this and all other numerical experiments are as follows: all
initial translational and rotational velocities and displace-
ments are zero. Several important observations can be made.

�i� As shown in Fig. 8, random side loads are capable of
producing significant �random� lateral displacements,
on the order of 1 km over the 25 s simulation period.
As also shown, and as expected, no lateral displace-
ment occurs when side loads are suppressed. The
magnitudes of observed displacements, in this and all

experiments, are of the appropriate scale, i.e.,

�Fs��⁄ ��eve
2Ae��MR�̈ / �MRẌo�→��Tf� /Xo�Tf�

��Fs�� / ��eve
2Ae�=O�10−2–10−3�. Here again, ��t�

represents either Yo�t� or Zo�t� and Tf is the total flight
simulation time, i.e., 25 s.

�ii� Due to the same scaling, the effect of side loads on
vertical displacements, Xo�t�, and thus total displace-
ment, ro�t�=�Xo

2+Yo
2+Zo

2, is negligible; see Figs. 8�a�
and 10.

�iii� The same simple scaling argument can be used to
interpret observed rocket velocity histories in Figs.

9�b� and 9�c�; here, �̇�Tf� / Ẋo�Tf��Fs�� / ��eve
2Ae�. Like-

wise, the scale of the random variation in the vertical

velocity component, Ẋo�t�, �relative to the no-side-

FIG. 6. �Color online� Nozzle shock location �a� radial
position of shock �Rshock in centimeter� vs its axial po-
sition �Xshock in centimeter� in the nozzle �note this is
only an approximation of the shock structure in a real
nozzle and is essentially based on or computed from
nozzle geometry�, �b� axial position �Xshock in centime-
ter� of shock in nozzle vs rocket vertical altitude from
ground �in km�, and �c� radial position of shock �Rshock

in centimeter� vs rocket vertical altitude from ground
�in kilometer�.

FIG. 7. �Color online� Pressure �in kilopascal� vs alti-
tude above sea-level �in kilometer�: pa is the ambient
atmospheric pressure, pe is the nozzle exit pressure
postshock, and pe,up,shock is the pressure upstream of the
shock.
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load history� is on the same order �Fig. 9�a��. Closer
inspection of Fig. 9�a�, however, yields that the verti-
cal ascent velocity of the rocket is slightly lower when
nozzle side loading is taken into account. This could
be attributed to transfer of momentum from the lon-
gitudinal direction �i.e., x-direction� to lateral direc-
tions �i.e., y- and z-directions� as rocket undergoes
yaw and pitch under the influence of these stochastic
in-nozzle side loads. Qualitatively, the thrust-time
curves �equivalently vX,o versus time curves� for simi-
lar small, single-stage rockets have been reported to
exhibit similar characteristics as shown in Fig. 9�a�.47

�iv� As expected, and as shown in Figs. 9�b� and 9�c�,
when side loads are turned off, lateral velocities re-
main zero throughout any given simulation.

�v� The effect of side loading on total velocity and dis-
placement is small and on the order of �Fs�� / ��eve

2Ae�;
refer to Fig. 10. This simply reflects the dominance of
the vertical velocity component relative to the lateral
components.

�vi� During the side loading period, pitch and yaw rates
exhibit random responses to the random internal
torques excited by side loads �refer to Fig. 11�; in
contrast, and due to the lack of coupling between roll
and side loading, the roll rate remains zero throughout
the simulated flight given zero initial conditions on
roll, pitch and yaw. Following the side-load period,
the pitch and yaw rate evolution become wholly de-
terministic, subject to a random initial condition at t
=T�11 second �end of side loading period�. Under

FIG. 8. �Color online� Position time history of the rock-
et’s center of mass O, as measured from an inertial
XYZ reference frame �i.e., from ground�. �a� Time his-
tory of X-position �i.e., vertical height or altitude from
ground� of center of mass, �b� time history of Y-position
of center of mass, �c� time history of Z-position of cen-
ter of mass, and �d� time history of radial position �ro�
of center of mass from the origin of inertial XYZ frame,
i.e., ro=�xo

2+yo
2+zo

2.

FIG. 9. �Color online� Velocity time history of the rock-
et’s center of mass O, as measured from an inertial
XYZ reference frame �i.e., from ground�. �a� Time his-
tory of velocity of center of mass in X-direction, �b�
time history of velocity of center of mass in Y-direction,
and �c� time history of velocity of center of mass in
Z-direction.
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the no-side-load scenario, since no internal or external
torques are present, the rocket rotation remains essen-
tially zero. It is interesting to note from both Figs. 11
and 13 that once the side-loading period is over, the
pitch and yaw rotation rates of the rocket tend to
move toward the zero mean, thereby emphasizing an
underlying rich dynamics associated with a “mean-
reverting” process. The detailed analyses capturing
the nature of this “mean-reverting” process will be
emphasized in subsequent publications.

The differences in the dynamic response of rigid-body
rocket model for side loading and no side load scenarios are
thus quite clear from Figs. 8–11. Although the rocket’s
center-of-mass altitude �i.e., Xo in Fig. 8�a�� and vertical
launch velocity �i.e., vX,o in Fig. 9�a�� are not affected much

by in-nozzle side loads, it’s the rocket lateral motion �i.e.,
Yo , Zo , vY,o , vZ,o in Figs. 8 and 9� that is significantly in-
fluenced by these side loads. The rocket during its attitude or
ascent thus continues to exhibit deviations �though slight/
minor—refer to Fig. 10� from the path that it would have
taken had there been no side loads in the nozzle. Also, it is
interesting to note that since the side loads in y- and
z-directions exhibit nearly same characteristics �or trends�, as
depicted in Fig. 5, the y- and z-direction motions of the
rocket tend to be similar, as could be inferred more clearly
from Figs. 13 and 15, thereby implying the stochastic distri-
bution of side loads do not induce any preference in
y-direction rocket motion over z-direction motion or vice-
versa.

It is clear that Figs. 8–11 only represent a stochastic

FIG. 10. �Color online� Influence of nozzle side loads
on path and speed of rocket during its attitude. �a� per-
centage change in the path of rocket’s center of mass,
i.e., 100�ro−ro,NO� /ro,NO% where ro=�xo

2+yo
2+zo

2 is the
radial position of rocket’s center of mass measured
from the origin of the inertial XYZ system �b� percent-
age change in the speed of rocket’s center of mass, i.e.,
100��vo�− �vo�NO� / �vo�NO%, where �vo�=�ẋo

2+ ẏo
2+ żo

2 is the
speed and the subscript “NO” refers to the no side-load
scenario.

FIG. 11. �Color online� Time history of rocket angular
velocity, as measured in body-fixed xyz reference frame
attached to center of mass O. �a� Time history of roll
angular velocity about x-axis, �b� time history of yaw
angular velocity about y -axis, and �c� time history of
pitch angular velocity about z-axis.
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sample for the attitude dynamics of rocket. In order to better
understand the stochastic effects of side-load generation pro-
cess on rocket attitude dynamics, numerous �i.e., 100� simu-
lations were performed to get a collection of stochastic
samples. Later, several standard tests were performed on
these realizations �especially those related to or accounting
for the lateral motion of rocket� to capture the underlying
stochastic distribution characteristics. Figure 12 shows a col-
lection of time histories �stochastic realizations� of the yaw
angular velocity �y of rocket obtained from 100 simulations.
Knowing this collection of data for yaw angular velocity, it is
easy to obtain the mean time history of �y as well as the
deviations from it �refer to Fig. 13�. It could be inferred from
Fig. 13 that with increasing �or large� number of stochastic
samples, the mean time history of �y would correspond to

the case of no side loading scenario, however, the error mar-
gins or bounds �dependent on the standard deviation, ��
would still be significant. This implies that concluding the
average effect of side loads on yaw motion of rocket to be
null would be erroneous as deviations from the mean behav-
ior are not insignificant. The variance varies with time—
growing steadily as long as shock is within the nozzle and
side loads are being generated, and later decaying as shock
goes past the exit of nozzle plane �as side loads no longer
exist once the shock escapes the nozzle, thereby forcing the
rocket to enter a stabilizing state that it would have seen if
the side loads were not present at all�. Also, Fig. 12 depicts
time slices of the collection of �y �yaw angular velocity�
samples at 1, 2.5, 7, 15, and 25 s. The sample data at these
time slices were analyzed to capture the underlying stochas-

FIG. 12. �Color online� Time histories �i.e., stochastic
realizations� of yaw angular velocity, �y, of the rocket:
complete collection of �y samples from 100 simulation
runs along with the time slices at 1, 2.5, 7, 15, and 25 s.

FIG. 13. �Color online� Time history of mean �i.e., ��
yaw angular velocity, �y, and pitch angular velocity, �z,
of the rocket and the errors or deviations �i.e.,
mean�standard deviation �i.e., ��� based on collection
of �y and �z samples for 100 simulations.

1-16 Srivastava, Tkacik, and Keanini J. Appl. Phys. 108, 1 �2010�

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063



tic distribution. Using normal probability plots �refer to Fig.
14� and the Anderson–Darling test it is seen that the under-
lying probability distributions of yaw angular velocity at ev-
ery time slice is Gaussian in nature. This is a critical obser-
vation as it implies the existence of a unique Chapman–
Kolmogorov equation, which once identified/formulated,
could be used to analyze the time-evolution of probability
distributions of rocket attitude dynamic indices �especially
the lateral motion parameters arising from stochastic side
loads�. Similar observations could be inferred from Figs. 15
and 16. Again, it is clearly evident from Figs. 13 and 15 that
side loads do not induce any preference in the y- and
z-direction motion parameters, whether they are yaw and

pitch angular velocities of the rocket about its center of mass
or the lateral translational displacements and velocities of the
center of mass.

V. CONCLUSIONS

A long standing, though previously unsolved problem in
rocket dynamics, rocket response to random, altitude-
dependent nozzle side loads, has been investigated. Numeri-
cal experiments, focused on determining single-realization
and ensemble average translational and rotational rocket dy-
namics, incorporate a distributed mass, six-degree of free-

FIG. 14. �Color online� Normal probability plots for the
collection data of yaw angular velocity, �y, and pitch
angular velocity, �z, at time slices of 1, 2.5, 7, 15, and
25 s.

FIG. 15. �Color online� Time history of mean �i.e., ��
lateral motion parameters for the center of mass of the
rocket and the corresponding errors or deviations �i.e.,
mean�standard deviation �i.e., ��� based on the collec-
tion of stochastic samples for 100 simulations. �a� Mean
path/trajectory for center of mass in the Y-direction
along with the deviations, �b� mean path/trajectory for
center of mass in the Z-direction along with the devia-
tions, �c� mean velocity of center of mass in the
Y-direction along with the deviations, and �d� mean ve-
locity of center of mass in the Z-direction along with
the deviations.
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dom rocket model, representative of small, sounding-rocket-
scale rockets. The principal contributions and findings are as
follows.

�1� A relatively simple, physically consistent model of ran-
dom separation-line motion within rigid �nonvibrating�
nozzles is developed. By circumventing difficult experi-
mental �or numerical� determination of space-dependent
in-nozzle pressure correlations, the proposed model of-
fers distinct advantages over Dumnov’s34 widely used
approach. Specifically, in exploiting well-known, nomi-
nally universal statistical properties associated with the
random motion of shock-separated boundary layers, the
model allows analytical determination of altitude-
dependent side-load statistics and straightforward Monte
Carlo simulation of individual side-load histories.

�2� Scaling indicates that as rocket size decreases, side loads
play an increasingly prominent role in rocket dynamics.
For example, numerical experiments show that during
short �25 s� simulated flight periods, the model rocket
can experience random, side-load-driven transverse dis-
placements on the order of several kilometers. Likewise,
side loads are found capable of inducing significant ran-
dom pitch and yaw rates and displacements.

�3� During the low-altitude side-load period �approximately
3.85 km�, pitch and yaw rates exhibit rapid increases in
stochasticity, as indicated by observed variances; similar
behavior is observed for lateral velocities. Following
nozzle expulsion of the side-load-inducing shock, how-
ever, side-loads cease; nevertheless, subsequent lateral
translational dynamics, as well as pitch and yaw rota-
tional dynamics, remain subject to the stochasticity gen-
erated during the side-load period. In the case of post-
side-load pitch and yaw rate variances, these exhibit a
slow decay toward zero. Conversely, lateral translational

velocity variances grow at an approximate quadratic rate
with altitude.

The implication of the results from this rocket model
simulation is clearly twofold: first, rocket attitude-dynamics
models not incorporating side loads will predict erroneous
launch trajectory and rigid-body rocket motion, which con-
sequently degrades the controller performance owing to
greater �often redundant� thrust and attitude control effort
and lack of compensation for the stochastic loading on
nozzle walls. Subsequent work will include discussion on
theoretical stochastic mechanics of a rocket under random
side loads, controller design to compensate for undesirable
effects of side loads, and development of more enhanced/
detailed rocket dynamics model.
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