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We directly monitored rock cracking

: : . o : : We developed a model for temp- & moisture-dependent subcritical crack
Cracks in mid-latitude desert rocks exhibit preferred orientations, using acoustic emission (AE) sensors, P P P

growth to inform our interpretation of measured cracking and field data.

at both sites, the vast majority of observed cracking occurred during
thermal events, and recorded strain shows evidence of thermal fatigue,
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Model Parameters

1) Solar-Induced Temperature Field

--conductive heat transfer of a sinusoidal heating function (from Holzhousen, 1989)
1) Solar-induced thermal stress field (from Holzhousen, 1989)

-- intergranular interactions only

-- f(diurnal temp. range)
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 a(N)=crack length at diurnal cycle, N
 ay = a(0) =initial crack length

B =1-m/2

e (C; =CAop,,t™'?, where C & m are material- and environment-dependent Paris law
coefficients available in the literature, and Ac,,, 4, =A01,4,(Z) is the depth-dependent
maximum thermal stress
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We examined the fraction of the entire period of record characterized by

various temperature conditions (A), compared to the fraction of rock falls
observed under those conditions (B). Generally, rock fall rates are higher than
expected at high temperatures (C).

when cracking occurred.

Diurnal temperature range by itself is not a strong predictor of AE-measured cracking rate s(left), but cracking disproportionately Rock fall data from a complex field site where other stress loading is
occurs under relatively high AT and humidity conditions (bottom left). undoubtedly at play (e.g. topography, higher occurrence of freezing T, |
temperatures) are consistent with our AE observations: — Model results show that crack growth rates in rock, regardless
: . : : : : : of loading mechanism, are strongly dependent on moisture.
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cracking with respect to daily relative humidity cracking with respect to temp. anomalies
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