LM117/LM317A/LM317

3-Terminal Adjustable Regulator

General Description

The LM117 series of adjustable 3-terminal positive voltage regulators is capable of supplying in excess of 1.5 A over a 1.2 V to 37 V output range. They are exceptionally easy to use and require only two external resistors to set the output voltage. Further, both line and load regulation are better than standard fixed regulators. Also, the LM117 is packaged in standard transistor packages which are easily mounted and handled.
In addition to higher performance than fixed regulators, the LM117 series offers full overload protection available only in IC's. Included on the chip are current limit, thermal overload protection and safe area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is disconnected.
Normally, no capacitors are needed unless the device is situated more than 6 inches from the input filter capacitors in which case an input bypass is needed. An optional output capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve very high ripple rejection ratios which are difficult to achieve with standard 3 -terminal regulators.
Besides replacing fixed regulators, the LM117 is useful in a wide variety of other applications. Since the regulator is "floating" and sees only the input-to-output differential volt-

Typical Applications

DS009063-1
Full output current not available at high input-output voltages
*Needed if device is more than 6 inches from filter capacitors.
tOptional-improves transient response. Output capacitors in the range used to provide μ of aluminum impedance and rejection of transients.
$+{ }^{+} V_{\text {OUT }}=1.25 \mathrm{~V}\left(1+\frac{R 2}{R 1}\right)+I_{A D J}\left(R_{2}\right)$
age, supplies of several hundred volts can be regulated as long as the maximum input to output differential is not exceeded, i.e., avoid short-circuiting the output.
Also, it makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment pin and output, the LM117 can be used as a precision current regulator. Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground which programs the output to 1.2 V where most loads draw little current.
For applications requiring greater output current, see LM150 series (3A) and LM138 series (5A) data sheets. For the negative complement, see LM137 series data sheet.

Features

- Guaranteed 1% output voltage tolerance (LM317A)
- Guaranteed max. 0.01\%/V line regulation (LM317A)
- Guaranteed max. 0.3% load regulation (LM117)

■ Guaranteed 1.5A output current

- Adjustable output down to 1.2 V
- Current limit constant with temperature
- P^{+}Product Enhancement tested
- 80 dB ripple rejection
- Output is short-circuit protected

LM117 Series Packages and Power Capability

Part Number Suffix	Package	Rated Power Dissipation	Design Load Current
K	TO-3	20 W	1.5 A
H	TO-39	2 W	0.5 A
T	TO-220	20 W	1.5 A
E	LCC	2 W	0.5 A
S	TO-263	4W	1.5 A

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
Power Dissipation
Input-Output Voltage Differential
Storage Temperature
Lead Temperature
Metal Package (Soldering, 10 seconds)
Plastic Package (Soldering, 4 seconds)
ESD Tolerance (Note 5)

Operating Temperature Range

LM117
LM317A
LM317
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+150^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$

Preconditioning
Thermal Limit Burn-In
All Devices 100\%

Electrical Characteristics (Note 3)

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$, and $\mathrm{I}_{\mathrm{OUT}}=10 \mathrm{~mA}$.

Parameter	Conditions	LM117 (Note 2)			Units
		Min	Typ	Max	
Reference Voltage					V
	$\begin{aligned} & 3 \mathrm{~V} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 40 \mathrm{~V}, \\ & 10 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq \mathrm{I}_{\mathrm{MAX}}, \mathrm{P} \leq \mathrm{P}_{\mathrm{MAX}} \end{aligned}$	1.20	1.25	1.30	V
Line Regulation	$3 \mathrm{~V} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 40 \mathrm{~V}$ (Note 4)		0.01	0.02	\%/V
			0.02	0.05	\%/V
Load Regulation	$10 \mathrm{~mA} \leq \mathrm{l}_{\text {OUT }} \leq \mathrm{I}_{\text {MAX }}($ Note 4)		0.1	0.3	\%
			0.3	1	\%
Thermal Regulation	20 ms Pulse		0.03	0.07	\%/W
Adjustment Pin Current			50	100	$\mu \mathrm{A}$
Adjustment Pin Current Change	$\begin{aligned} & 10 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq \mathrm{I}_{\text {MAX }} \\ & 3 \mathrm{~V} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 40 \mathrm{~V} \end{aligned}$		0.2	5	$\mu \mathrm{A}$
Temperature Stability	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{J}} \leq \mathrm{T}_{\text {MAX }}$		1		\%
Minimum Load Current	$\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)=40 \mathrm{~V}$		3.5	5	mA
Current Limit	$\begin{aligned} & \left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 15 \mathrm{~V} \\ & \text { K Package } \\ & \mathrm{H}, \text { K Packages } \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.2 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 1.8 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$
	$\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)=40 \mathrm{~V}$ K Package H, K Packages	$\begin{gathered} 0.3 \\ 0.15 \end{gathered}$	$\begin{aligned} & 0.4 \\ & 0.2 \end{aligned}$		$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$
RMS Output Noise, \% of $\mathrm{V}_{\text {OUT }}$	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		0.003		\%
Ripple Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}, \\ & \mathrm{C}_{\mathrm{ADJ}}=0 \mu \mathrm{~F} \end{aligned}$		65		dB
	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}, \\ & \mathrm{C}_{\text {ADJ }}=10 \mu \mathrm{~F} \end{aligned}$	66	80		dB
Long-Term Stability	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, 1000 \mathrm{hrs}$		0.3	1	\%
Thermal Resistance, Junction-to-Case	K Package H Package E Package		$\begin{aligned} & 2.3 \\ & 12 \end{aligned}$	$\begin{gathered} 3 \\ 15 \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
Thermal Resistance, Junction-to-Ambient (No Heat Sink)	K Package H Package E Package		$\begin{gathered} \hline 35 \\ 140 \end{gathered}$		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$

Electrical Characteristics (Note 3)

Specifications with standard type face are for $T_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$, and $\mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}$.

Parameter	Conditions	LM317A			LM317			Units
		Min	Typ	Max	Min	Typ	Max	
Reference Voltage		1.238	1.250	1.262				V
	$\begin{aligned} & 3 \mathrm{~V} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 40 \mathrm{~V}, \\ & 10 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq \mathrm{I}_{\mathrm{MAX}}, \mathrm{P} \leq \mathrm{P}_{\mathrm{MAX}} \end{aligned}$	1.225	1.250	1.270	1.20	1.25	1.30	V
Line Regulation	$3 \mathrm{~V} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 40 \mathrm{~V}$ (Note 4)		0.005	0.01		0.01	0.04	\%/V
			0.01	0.02		0.02	0.07	\%/V
Load Regulation	$10 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq \mathrm{I}_{\text {MAX }}($ Note 4)		0.1	0.5		0.1	0.5	\%
			0.3	1		0.3	1.5	\%
Thermal Regulation	20 ms Pulse		0.04	0.07		0.04	0.07	\%/W
Adjustment Pin Current			50	100		50	100	$\mu \mathrm{A}$
Adjustment Pin Current Change	$\begin{aligned} & 10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{OUT}} \leq \mathrm{I}_{\mathrm{MAX}} \\ & 3 \mathrm{~V} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 40 \mathrm{~V} \end{aligned}$		0.2	5		0.2	5	$\mu \mathrm{A}$
Temperature Stability	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{J} \leq \mathrm{T}_{\text {MAX }}$		1			1		\%
Minimum Load Current	$\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)=40 \mathrm{~V}$		3.5	10		3.5	10	mA
Current Limit	$\begin{aligned} & \left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\mathrm{OUT}}\right) \leq 15 \mathrm{~V} \\ & \mathrm{~K}, \mathrm{~T}, \mathrm{~S} \text { Packages } \\ & \text { H Package } \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.2 \\ & 0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.4 \\ & 1.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.2 \\ & 0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.4 \\ & 1.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$
	$\begin{aligned} & \left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)=40 \mathrm{~V} \\ & \mathrm{~K}, \mathrm{~T}, \mathrm{~S} \text { Packages } \\ & \text { H Package } \end{aligned}$	$\begin{array}{r} 0.15 \\ 0.075 \end{array}$	$\begin{aligned} & 0.4 \\ & 0.2 \end{aligned}$		$\begin{array}{r} 0.15 \\ 0.075 \\ \hline \end{array}$	$\begin{aligned} & 0.4 \\ & 0.2 \end{aligned}$		$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$
RMS Output Noise, \% of $\mathrm{V}_{\text {Out }}$	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		0.003			0.003		\%
Ripple Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}, \\ & \mathrm{C}_{\text {ADJ }}=0 \mu \mathrm{~F} \end{aligned}$		65			65		dB
	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}, \\ & \mathrm{C}_{\text {ADJ }}=10 \mu \mathrm{~F} \end{aligned}$	66	80		66	80		dB
Long-Term Stability	$\mathrm{T}_{J}=125^{\circ} \mathrm{C}, 1000 \mathrm{hrs}$		0.3	1		0.3	1	\%
Thermal Resistance, Junction-to-Case	K Package H Package T Package		$\begin{gathered} 12 \\ 4 \end{gathered}$	$\begin{gathered} 15 \\ 5 \end{gathered}$		$\begin{gathered} 2.3 \\ 12 \\ 4 \end{gathered}$	3 15	$\begin{aligned} & \hline{ }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
Thermal Resistance, Junction-to-Ambient (No Heat Sink)	K Package H Package T Package S Package (Note 6)		$\begin{gathered} 35 \\ 140 \\ 50 \\ 50 \end{gathered}$			$\begin{gathered} 35 \\ 140 \\ 50 \\ 50 \end{gathered}$		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Refer to RETS117H drawing for the LM117H, or the RETS117K for the LM117K military specifications.
Note 3: Although power dissipation is internally limited, these specifications are applicable for maximum power dissipations of 2 W for the TO-39 and 20W for the TO-3, TO-220, and TO-263. I IMA is 1.5 A for the TO-3, TO-220, and TO-263 packages and 0.5 A for the TO-39 package. All limits (i.e., the numbers in the Min. and Max. columns) are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 4: Regulation is measured at a constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specifications for thermal regulation.
Note 5: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 6: If the TO-263 package is used, the thermal resistance can be reduced by increasing the PC board copper area thermally connected to the package: Using 0.5 square inches of copper area. θ_{JA} is $50^{\circ} \mathrm{C} / \mathrm{W}$; with 1 square inch of copper area, θ_{JA} is $37^{\circ} \mathrm{C} / \mathrm{W}$; and with 1.6 or more square inches of copper area, θ_{JA} is $32^{\circ} \mathrm{C} / \mathrm{W}$.

Typical Performance Characteristics

Output Capacitor $=0 \mu \mathrm{~F}$ unless otherwise noted

Dropout Voltage

Current Limit

DS009063-38

Temperature Stability

Adjustment Current

DS009063-39

Minimum Operating Current

Ripple Rejection

Typical Performance Characteristics (Continued)

Line Transient Response

Load Transient Response

Application Hints

In operation, the LM117 develops a nominal 1.25 V reference voltage, $\mathrm{V}_{\text {REF }}$, between the output and adjustment terminal. The reference voltage is impressed across program resistor R1 and, since the voltage is constant, a constant current l_{1} then flows through the output set resistor R2, giving an output voltage of

$$
V_{\text {OUT }}=V_{\text {REF }}\left(1+\frac{R 2}{R 1}\right)+I_{\text {ADJ }} R 2
$$

DS009063-5
FIGURE 1.
Since the $100 \mu \mathrm{~A}$ current from the adjustment terminal represents an error term, the LM117 was designed to minimize $I_{A D J}$ and make it very constant with line and load changes. To do this, all quiescent operating current is returned to the output establishing a minimum load current requirement. If there is insufficient load on the output, the output will rise.

External Capacitors

An input bypass capacitor is recommended. A $0.1 \mu \mathrm{~F}$ disc or $1 \mu \mathrm{~F}$ solid tantalum on the input is suitable input bypassing for almost all applications. The device is more sensitive to the absence of input bypassing when adjustment or output capacitors are used but the above values will eliminate the possibility of problems.
The adjustment terminal can be bypassed to ground on the LM117 to improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. With a $10 \mu \mathrm{~F}$ bypass capacitor 80 dB ripple rejection is obtainable at any output level. Increases over $10 \mu \mathrm{~F}$
do not appreciably improve the ripple rejection at frequencies above 120 Hz . If the bypass capacitor is used, it is sometimes necessary to include protection diodes to prevent the capacitor from discharging through internal low current paths and damaging the device.
In general, the best type of capacitors to use is solid tantalum. Solid tantalum capacitors have low impedance even at high frequencies. Depending upon capacitor construction, it takes about $25 \mu \mathrm{~F}$ in aluminum electrolytic to equal $1 \mu \mathrm{~F}$ solid tantalum at high frequencies. Ceramic capacitors are also good at high frequencies; but some types have a large decrease in capacitance at frequencies around 0.5 MHz . For this reason, $0.01 \mu \mathrm{~F}$ disc may seem to work better than a 0.1 $\mu \mathrm{F}$ disc as a bypass.
Although the LM117 is stable with no output capacitors, like any feedback circuit, certain values of external capacitance can cause excessive ringing. This occurs with values between 500 pF and 5000 pF . A $1 \mu \mathrm{~F}$ solid tantalum (or $25 \mu \mathrm{~F}$ aluminum electrolytic) on the output swamps this effect and insures stability. Any increase of the load capacitance larger than $10 \mu \mathrm{~F}$ will merely improve the loop stability and output impedance

Load Regulation

The LM117 is capable of providing extremely good load regulation but a few precautions are needed to obtain maximum performance. The current set resistor connected between the adjustment terminal and the output terminal (usually 240Ω) should be tied directly to the output (case) of the regulator rather than near the load. This eliminates line drops from appearing effectively in series with the reference and degrading regulation. For example, a 15 V regulator with 0.05Ω resistance between the regulator and load will have a load regulation due to line resistance of $0.05 \Omega \times \mathrm{I}_{\mathrm{L}}$. If the set resistor is connected near the load the effective line resistance will be $0.05 \Omega(1+\mathrm{R} 2 / \mathrm{R} 1)$ or in this case, 11.5 times worse.
Figure 2 shows the effect of resistance between the regulator and 240Ω set resistor.

Application Hints (Continued)

DS009063-6
FIGURE 2. Regulator with Line Resistance in Output Lead

With the TO-3 package, it is easy to minimize the resistance from the case to the set resistor, by using two separate leads to the case. However, with the TO-39 package, care should be taken to minimize the wire length of the output lead. The ground of R2 can be returned near the ground of the load to provide remote ground sensing and improve load regulation.

Protection Diodes

When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator. Most $10 \mu \mathrm{~F}$ capacitors have low enough internal series resistance to deliver 20A spikes when shorted. Although the surge is short, there is enough energy to damage parts of the IC.
When an output capacitor is connected to a regulator and the input is shorted, the output capacitor will discharge into the output of the regulator. The discharge current depends on the value of the capacitor, the output voltage of the regulator, and the rate of decrease of V_{IN}. In the LM117, this discharge path is through a large junction that is able to sustain 15A surge with no problem. This is not true of other types of positive regulators. For output capacitors of $25 \mu \mathrm{~F}$ or less, there is no need to use diodes.
The bypass capacitor on the adjustment terminal can discharge through a low current junction. Discharge occurs when either the input or output is shorted. Internal to the LM117 is a 50Ω resistor which limits the peak discharge current. No protection is needed for output voltages of 25 V or less and $10 \mu \mathrm{~F}$ capacitance. Figure 3 shows an LM117 with protection diodes included for use with outputs greater than 25 V and high values of output capacitance.

DS009063-7

$$
V_{\text {OUT }}=1.25 \mathrm{~V}\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)+\mathrm{I}_{\mathrm{ADJ}} \mathrm{R} 2
$$

D1 protects against C1
D2 protects against C2
FIGURE 3. Regulator with Protection Diodes

Schematic Diagram

Typical Applications

5V Logic Regulator with Electronic Shutdown*

DS009063-3
*Min. output $\approx 1.2 \mathrm{~V}$

†Solid tantalum

*Discharges C1 if output is shorted to ground

High Stability 10V Regulator

Typical Applications (Continued)

\ddagger Optional—improves ripple rejection
Solid tantalum
Minimum load current $=30 \mathrm{~mA}$

Full output current not available at high input-output voltages

Typical Applications (Continued)

†Solid tantalum
 *Lights in constant current mode

Typical Applications (Continued)

DS009063-19
\dagger Solid tantalum
*Core—Arnold A-254168-2 60 turns

DS009063-20
†Solid tantalum
*Core—Arnold A-254168-2 60 turns

Typical Applications (Continued)

DS009063-22

Current Limited Voltage Regulator

- Short circuit current is approximately $\frac{600 \mathrm{mV}}{\mathrm{R} 3}$, or 120 mA
(Compared to LM117's higher current limit)
-At 50 mA output only $3 / 4$ volt of drop occurs in R_{3} and R_{4}

Adjusting Multiple On-Card Regulators with Single Control*

DS009063-24
All outputs within $\pm 100 \mathrm{mV}$
tMinimum load-10 mA

Typical Applications (Continued)

${ }^{*} \mathrm{R}_{\mathrm{S}}$-sets output impedance of charger: $\mathrm{Z}_{\mathrm{OUT}}=\mathrm{R}_{\mathrm{S}}\left(1+\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)$
Use of R_{S} allows low charging rates with fully charged battery.

Typical Applications (Continued)

Connection Diagrams

DS009063-30

> CASE IS OUTPUT
> Bottom View
> Steel Package

Order Number LM117K STEEL or LM317K STEEL
See NS Package Number K02A
Order Number LM117K/883
See NS Package Number K02C
(TO-263) Surface-Mount Package
(TO-39)
Metal Can Package

CASE IS OUTPUT
Bottom View
Order Number LM117H, LM117H/883, LM317AH or LM317H See NS Package Number H03A

Side View Order Number LM317AS or LM317S See NS Package Number TS3B
(TO-220)

Front View
Order Number LM317AT or LM317T
See NS Package Number T03B
Ceramic Leadless Chip Carrier

Top View
Order Number LM117E/883
See NS Package Number E20A
\square

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

(TO-39) Metal Can Package
Order Number LM117H, LM117H/883, LM317AH or LM317H NS Package Number H03A

TO-3 Metal Can Package (K)
Order Number LM117K STEEL,
LM117K STEEL/883, or LM317K STEEL
NS Package Number K02A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

