
Chapter 8

DC Inductor Design Using Gapped Cores
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Introduction

Designers have used various approaches in arriving at suitable inductor designs. For example, in many

cases, a rule of thumb used for dealing with current density is that a good working level is 200 amps-per-

cnr (1000 Cir-Mils-per-amp). This rule is satisfactory in many instances; however, the wire size used to

meet this requirement may produce a heavier and bulkier inductor than desired or required. The

information presented herein will make it possible to avoid the use of this and other rules of thumb and to

develop an economical and a better design.

Critical Inductance for Sine Wave Rectification

The LC filter is the basic method of reducing ripple levels. The two basic rectifier circuits are the full-

wave center-tap as shown in Figure 8-1 and the full-wave bridge, as shown in Figure 8-2. To achieve

normal inductor operation, it is necessary that there be a continuous flow of current through the input

inductor, LI.

Full Wave Center Tap

Figure 8-1. Full-Wave Center Tap with an LC filter.

Tl

Full Wave Bridge

Figure 8-2. Full-Wave Bridge with an LC filter.
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The value for minimum inductance called critical inductance, L(crt) is:

= ' [henrys]

Where:

co = IK f

f = line frequency

The higher the load resistance, R,,, (i.e., the lower the dc load current), the more difficult it is to maintain a

continuous flow of current. The filter inductor operates in the following manner: When R<, approaches

infinity, under an unloaded condition, (no bleeder resistor), I0 = 0, the filter capacitor will charge to Vlpk,

the peak voltage. Therefore, the output voltage will be equal to the peak value of the input voltage, as

shown in Figure 8-3.

>
iT

o

-I

O

L/crt)= Critical Inductance

V

Load Current, IQ

Figure 8-3. Critical Inductance Point.

The ripple reduction from a single stage LC filter can be calculated, using Equation 8-2 and Figure 8-4.

V -Vr r(pk) r , [volts-peak] [8-2]

CR1 'o ^/Vr(pk)

Figure 8-4. LC Filter Ripple Reduction.
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Critical Inductance for Buck Type Converters

The buck type converter schematic is shown in Figure 8-5, and the buck type dc-to-dc converter is shown

in Figure 8.6. The buck regulator filter circuit shown in Figure 8-5 has three current probes. These current

probes monitor the three basic currents in a switch mode, buck output filter. Current probe A monitors the

power MOSFET, Ql, switching current. Current probe B monitors the commutating current through CR1.

Current probe C monitors the current through the output inductor, LI.

The typical filter waveforms of the buck converter are shown in Figure 8-7. The waveforms are shown

with the converter operating at a 0.5 duty ratio. The applied voltage, VI to the filter, is shown in Figure 8-

7A. The power MOSFET, Ql, current is shown in Figure 8-7B. The commutating current flowing through

CR1 is shown in Figure 8-7C. The commutating current is the result of Ql being turned off, and the field

in LI collapsing, producing the commutating current. The current flowing through LI is shown in Figure

8-7D. The current flowing through LI is the sum of the currents in Figure 8-7B and 8-7C.
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Figure 8-5. Buck Regulator Converter.

The critical inductance current is shown in Figure 8-8, 8-B and is realized in Equation 8-3. The critical

inductance current is when the ratio of the delta current to the output load current is equal to 2 = AI /10. If

the output load current is allowed to go beyond this point, the current will become discontinuous, as shown

in Figure 8-8, 8-D. The applied voltage, VI, will have ringing at the level of the output voltage, as shown

in Figure 8-8, 8-C. When the current in the output inductor becomes discontinuous, as shown in Figure 8-

8, 8-D, the response time for a step load becomes very poor.

When designing multiple output converters similar to Figure 8-6, the slaved outputs should never have the

current in the inductor go discontinuous or to zero. If the current goes to zero, a slaved output voltage will

rise to the value of VI. If the current is allowed to go to zero, then, there is no potential difference between

the input and output voltage of the filter. Then the output voltage will rise to equal the peak input voltage.
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Figure 8-6. Push-Pull Buck Type Converter.

7-A

Current Probe C

Figure 8-7. Typical Buck Converter Waveforms, Operating at a 0.5 Duty Ratio.

Copyright © 2004 by Marcel Dekker, Inc. All Rights Reserved.



Vj L T

8-D

Current Probe C
V

t

V

1

Ir
r 1

ton toff

V0

AI

, !
1

::^ — ̂ -«=~" ^

i
^^^^^ -- lo

t
Current Probe C

Figure 8-8. Buck Converter, Output Filter Inductor Goes from Critical to Discontinuous Operation.

Core Materials, Used in PWM Converters

Designers have routinely tended to specify Molypermalloy powder materials for filter inductors used in

high-frequency, power converters and pulse-width-modulators (PWM) switched regulators, because of the

availability of manufacturers' literature containing tables, graphs, and examples that simplify the design

task. Use of these cores may result in an inductor design not optimized for size and weight. For example,

as shown in Figure 8-9, Molypermalloy powder cores, operating with a dc bias of 0.3T, have only about

80% of the original inductance, with very rapid falloff at higher flux densities. When size is of greatest

concern then, magnetic materials with high flux saturation, Bs, would be first choice. Materials, such as

silicon or some amorphous materials, have approximately four times the useful flux density compared to

Molypermalloy powder cores. Iron alloys retain 90% of their original inductance at greater than 1.2T. Iron

alloys, when designed correctly and used in the right application, will perform well at frequencies up to

100kHz. When operating above 100kHz, then the only material is ferrite. Ferrite materials have a negative

temperature coefficient regarding flux density. The operating temperature and temperature rise should be

used to calculate the maximum flux density.
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To get optimum performance, together with size, the engineer must evaluate the materials for both, Bs, and

Bac. See Table 8-1. The operating dc flux has only to do with I2R losses, (copper). The ac flux, Bac, has to

do with core loss. This loss depends directly on the material. There are many factors that impact a design:

cost, size, temperature rise and material availability.

There are significant advantages to be gained by the use of iron alloys and ferrites in the design of power

inductors, despite certain disadvantages, such as the need for banding and gapping materials, banding tools,

mounting brackets, and winding mandrels.

Iron alloys and ferrites provide greater flexibility in the design of high frequency power inductors, because

the air gap can be adjusted to any desired length, and because the relative permeability is high, even at

high, dc flux density.

100

£ 80

70

60

0.001 0.01 0.1
Polarized Flux Density, tesla

Figure 8-9. Inductance Versus dc Bias.

Table 8-1. Magnetic Material Properties

Magnetic Material Properties

Material

Name

Silicon

Orthonol

Permalloy

Amorphous

Amorphous

Amorphous(u)

Ferrite

Composition

3-97 SiFe

50-50 NiFe

80-20 NiFe

81-3.5 FeSi

66-4 CoFe

73-15FeSi

MnZn

Initial

Permeability

l^i

1500

2000

25000

1500

800

30000

2500

Flux Density

Tesla

Bs

1.5-1.8

1.42-1.58

0.66-0.82

1.5-1.6

0.57

1.0-1.2

0.5

Curie

Temp.

°C

750

500

460

370

250

460

>230

Density

grams/cm3

5

7.63

8.24

8.73

7.32

7.59

7.73

4.8
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Fundamental Considerations

The design of a linear reactor depends upon four related factors:

1. Desired inductance, L

2. Direct current, Idc

3. Alternating current, AI

4. Power loss and temperature, Tr

With these requirements established, the designer must determine the maximum values for, Bdc, and, Bac,

that will not produce magnetic saturation. The designer must make trade-offs that will yield the highest

inductance for a given volume. It should be remembered the peak operating flux, Bpk, depends upon, Bdc +

Bac, in the manner in Figure 8-10.

=Bdc+-, [tesla] [8-5]

',+
[teslal
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Figure 8-10. Inductor Flux Density Versus 1^ + AI Current.

The inductance of an iron-core inductor carrying direct current and having an air gap may be expressed as:

MPL
[henrys] [8-9]

This equation shows that inductance is dependent on the effective length of the magnetic path, which is the

sum of the air gap length, lg, and the ratio of the core mean length to the material permeability, MPL/um.

When the core air gap, lg, is large compared to the ratio, MPL/um, because of material permeability, um,

variations in um do not substantially affect the total effective magnetic path length or the inductance. Then

the inductance Equation [8-9] reduces to:

[henrys] [8-10]

Final determination of the air gap size requires consideration of the effect of fringing flux, which is a

function of gap dimension, the shape of the pole faces, and the shape, size, and location of the winding. Its

net effect is to shorten the air gap. Because of the fringing flux it is wise to lower the initial operating flux

density, 10 to 20%.

Fringing Flux

Fringing flux decreases the total reluctance of the magnetic path and therefore, increases the inductance by

a factor, F, to a value greater than that calculated from Equation 8-10. Fringing flux is a larger percentage

of the total for the larger gaps.
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The fringing factor is:

1 2G

rV n J

[8-11]

Where G is the winding length, defined in Chapter 3. This equation is valid for laminations, C cores and

cut ferrites. Equation [8-11] is plotted in Figure 8-11.

3 -

X
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Figure 8-11. Increase of Inductance with Fringing Flux at the Gap.

As the air gap increases, the flux across the gap fringes more and more. Some of the fringing flux strikes

the core, perpendicular to the strip or tape, and sets up eddy currents, which cause additional losses in the

core. If the gap dimension gets too large, the fringing flux will strike the copper winding and produce eddy

currents, generating heat, just like an induction heater. The fringing flux will jump the gap and produce

eddy currents, in both the core and winding, as shown in Figure 8-12.

The inductance, L computed in Equation [8-10], does not include the effect of the fringing flux. The value

of inductance, L' corrected for fringing flux is:

-, [henrys] [8-12]
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Figure 8-12. Fringing Flux Around the Gap of an Inductor.

The effect permeability may be calculated from the following equation:

[8-13]

Where, um, is the material permeability.

Inductors

Inductors that carry direct current are used frequently in a wide variety of ground, air, and space

applications. Selection of the best magnetic core for an inductor frequently involves a trial-and-error type

of calculation.

The author has developed a simplified method of designing optimum, dc carrying inductors with gapped

cores. This method allows the engineer to select the proper core that will provide correct copper loss, and

make allowances for fringing flux, without relying on trial-and-error and the use of the cumbersome

Hanna's curves.

Rather than discuss the various methods used by transformer designers, the author believes it is more useful

to consider typical design problems, and to work out solutions using the approach based upon newly

formulated relationships. Two gapped core designs will be compared. To compare their merits, the first

design example will use the core geometry, Kg, and the second design will use the area product, Ap.

Inductors, designed in this handbook, are banded together with phosphor bronze banding material, or held

together with aluminum brackets. The use of steel banding material; or brackets that bridge the gap are not

recommended, because the use of steel across the gap is called shorting the gap. When the gap is shorted,

the inductance will increase from the calculated value.
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Relationship of, Ap, to Inductor's Energy-Handling Capability

The energy-handling capability of a core is related to its area product, Ap, by the equation:

2(Energy)(l04)
A =— '-, [cm4] [8-14]

BmJKu

Where: Energy is in watt-seconds.
Bm is the flux density, tesla.
J is the current density, amps-per-cm2.
Ku is the window utilization factor. (See Chapter 4)

From the above, it can be seen that factors such as flux density, Bm, window utilization factor, Ku, (which

defines the maximum space that may be used by the copper in the window), and the current density, J,

which controls the copper loss, all impact the area product, Ap. The energy-handling capability of a core is

derived from:

LI2

Energy = , [watt-seconds] [8-15]

Relationship of, Kg, to Inductor's Energy-Handling Capability

Inductors, like transformers, are designed for a given temperature rise. They can also be designed for a

given regulation. The regulation and energy handling ability of a core is related to two constants:

a=± ^-, [%] [8-16]

Where, a, is the regulation, %:

The constant, Kg, is determined by the core geometry:

W A1 K
K = " c ", [cm5] [8-17]s MLT

The constant, Ke, is determined by the magnetic and electrical operating conditions:

Ke=Q.145P0B
2
pk(lQ-4} [8-18]

The peak operating flux density, Bpj(, is:

Bpt=Btlc+^, [tesla] [8-19]

From the above, it can be seen that the flux density, Bpk, is the predominant factor governing size.
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The output power, P0, is defined in Figure 8-13.

[8-20]
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Figure 8-13. Defining the Inductor Output Power.

Gapped Inductor Design Example Using the Core Geometry, Kg, Approach

Step No. 1 Design a linear dc inductor with the following specifications.

1. Inductance, L = 0.0025 henrys

2. dc current, I0 = 1.5 amps

3. ac current, AI = 0.2 amps

4. Output power, P0 = 100 watts

5. Regulation, a = 1.0 %

6. Ripple Frequency = 200 kHz

7. Operating flux density, Bm = 0.22 tesla

8. Core Material = ferrite

9. Window utilization, Ku = 0.4

10. Temperature rise goal, Tr = 25°C

Step No. 2 Calculate the peak current, Ipk.

2 > [amPs]

/ M = 1 - 6 > [amps]

-y, [amps]
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Step No. 3 Calculate the energy-handling capability.

Ll\
Energy = — — , [watt-seconds]

(0.0025)(1.6)2

Energy = - - — — — , [watt-seconds]

Energy = 0.0032, [watt-seconds]

Step No. 4 Calculate the electrical conditions coefficient, Ke.

Ke = 0.145(lOO)(0.22)2(lO~4)

K = 0.0000702

Step No. 5 Calculate the core geometry coefficient, Kg.

K,a

(0.0032)2
 5

s ~(0.0000702)(1.0)'

A T g = 0.146, [cm5]

Step No. 6 Select an ETD ferrite core from Chapter 3. The data listed is the closest core to the calculated

core geometry, Kg.

1. Core Number = ETD-39

2. Magnetic Path Length, MPL = 9.22 cm

3. Core Weight, Wtfi = 60 grams

4. Mean Length Turn, MLT = 8.3 cm

5. Iron Area, Ac = 1.252 cm2

6. Window Area, Wa = 2.34 cm"

7. Area Product, Ap = 2.93 cm4

8. Core Geometry, Kg = 0.177 cm5

9. Surface Area, A, = 69.9 cm2

10. Material, P = 2500^1

11. Millihenrys-per-lk, AL = 3295 mh

12. Winding Length, G = 2.84 cm
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Step No. 7 Calculate the current density, J, using the area product equation, Ap.

J = - „ , „ - > [amps-per-cm ]
BmApKu

2(0.0032)(l04)
7 = -, - TT - r, — r > [amps-per-cm2 ]

(0.22)(2.93)(0.4)

J = 248, [amps-per-cm2 ]

Step No. 8 Calculate the rms current, Irms.

^ s=V(l-5)2+(0.2)2 , [amps]

/„„,=!.51, [amps]

Step No. 9 Calculate the required bare wire area, Aw(B).

^ _ 'rim fcni2 1

J

> [cm

AW(B} = 0.00609, [cm2]

(248)

W(B} =

Step No. 10 Select a wire from the Wire Table in Chapter 4. If the area is not within 10%, take the next

smallest size. Also, record the micro-ohms per centimeter.

AWG = #19

Bare, AW(B) = 0.00653, [cm2 ]

Insulated, Aw = 0.00754, [cm2]

—— = 264, [micro-ohm/cm]

Step No. 11 Calculate the effective window area, Wa(eff,. Using the window area found in Step 6. A typical

value for, S3, is 0.75, as shown in Chapter 4.

W.W=WaS>, [cm2]

«W)=(2-34)(°-75)>

^,=1.76, [cm2]
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Step No. 12 Calculate the number turns possible, N, using the insulated wire area, Aw, found in Step 10. A

typical value for, 82, is 0.6, as shown in Chapter 4.

w,lf,s,
N= "(eff} 2, [turns]

Aw

(1.76)(0.60)
±- — ̂  - -.

(0.00754)

TV = 140, [turns]

[turns]

Step No. 13 Calculate the required gap, lg.

0.4;r^24(lO-8)
/.= - Z -- — , [cm]

(1.26)(14Q)2(1.25)(1Q-8) (9.22}
I = - ; - 7 — - - -- - . [cm]

g (0.0025) {2500 )

/ „ = < ) . 120, [cm]

Step No. 14 Calculate the equivalent gap in mils.

mils = cm(393.7)

mils = (0.120)(393.7)

mils = 47. 2 use 50

Step No. 15 Calculate the fringing flux factor, F.

VI .25 ^ 0.120 J

F=1.41

Step No. 16 Calculate the new number of turns, Nn, by inserting the fringing flux, ¥.

/ L
Nn = g— -, [turns]

" ^ 0.4^4 F(lO-8)

AT, =116, [turns]
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Step No. 17 Calculate the winding resistance, RL. Use the MLT from Step 6 and the micro-ohm per

centimeter from Step 10.

) l ( r 6 , [ohms]

RL =(8.3)(ll6)(264)(l(T6), [ohms]

RL = 0.254, [ohms]

Step No. 1 8 Calculate the copper loss, Pcu.

P fu=(l.5l)2(0.254), [watts]

Pca = 0.579, [watts]

Step No. 19 Calculate the regulation, a.

a = ̂ -(100), [%]
o

(0.579)
a=~, r

(100)

a = 0.579, [%

Step No. 20 Calculate the ac flux density, Bac.

(0.120)v ;
' [tesla]

1, 2500

Bac= 0.0167, [tesla]

Step No. 21 Calculate the watts per kilogram for ferrite, P, material in Chapter 2. Watts per kilogram can

be written in milliwatts per gram.

mW/g = (0.00004855) (200000)° 63) (0.0167 )(262)

mW/g = 0.468
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Step No. 22 Calculate the core loss, Pfe.

Pfe = (mW/g)(Wtfe )(l<r3 ), [watts]

P/e=(0.468)(60)(l(r3), [watts]

/> / e=0.028l, [watts]

Step No. 23 Calculate the total loss, copper plus iron, Ps.

Pj. =(0.0281) + (0.579), [watts]

PL = 0.607, [watts]

Step No. 24 Calculate the watt density, vy. The surface area, A,, can be found in Step 6.

p
i// = —, [watts/cm2 ]

4

(0.607)
y/ = -. - ̂  , [watts/cm2 ]

(69.9)

^ = 0.00868, [watts/cm2]

Step No. 25 Calculate the temperature rise, Tr.

Tr =450(0.00868)(°826),

Tr=8.92, [°C]

Step No. 26 Calculate the peak flux density, Bpi<.

p / q ̂ -, \ ' L j
(0.127)+-^=-v ; (2500)

Bit= 0.252, [tesla]
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Note:

The big advantage in using the core geometry design procedure is that the wire current density is

calculated. When using the area product design procedure, the current density is an estimate, at best. In

this next design the same current density will be used as in the core geometry design.

Gapped Inductor Design Example Using the Area Product, Ap, Approach

Step No. 1 Design a linear dc inductor with the following specifications:

1. Inductance, L = 0.0025 henrys

2. dc current, I0 = 1.5 amps

3. ac current, AI = 0.2 amps

4. Output power, P0 = 100 watts

5. Current Density, J = 250 amps-per-cm2

6. Ripple Frequency = 200 kHz

7. Operating flux density, Bm = 0.22 tesla

8. Core Material = ferrite

9. Window utilization, Ku = 0.4

10. Temperature rise goal, Tr = 25°C

Step No. 2 Calculate the peak current, Ip^.

I
Pk=Io+ — , [amPs]

7M=(1.5) + ̂ , [amps]

7^=1.6, [amps]

Step No. 3 Calculate the energy-handling capability.

LI\
Energy = ——, [watt-seconds]

(0.0025)(1.6)2

Energy = - ———, [watt-seconds]

Energy = 0.0032, [watt-seconds]
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Step No. 4 Calculate the area product, Ap.

^2(Ene,gy)(loQ ^

2(0.0032)(l04)

^=(0.22)(248)(0.4)' ^ ]

4, =2.93, [cm4]

Step No. 5 Select an ETD ferrite core from Chapter 3. The data listed is the closest core to the calculated

area product, Ap.

1. Core Number = ETD-39

2. Magnetic Path Length, MPL = 9.22 cm

3. Core Weight, Wtft = 60 grams

4. Mean Length Turn, MLT = 8.3 cm

5. Iron Area, Ac , = 1.252 cm2

6. Window Area, Wa = 2.34 cm2

7. Area Product, Ap = 2.93 cm4

8. Core Geometry, Kg = 0.177 cm5

9. Surface Area, A, = 69.9 cm2

10. Material, P = 2500^

11. Millihenrys-per-lk, AL = 3295 mh

12. Winding Length, G = 2.84 cm

Step No. 6 Calculate the rms current, Irms.

/™=VO-5) 2 +(° - 2 ) 2 > [amps]
/™ s=

1-51 ' [amps]

Step No. 7 Calculate the required bare wire area, AW(B).

™W(S) = ~j~>

, [cm2]

, ( f l ) = 0.00609, [cm2]
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Step No. 8 Select a wire from the Wire Table in Chapter 4. If the area is not within 10%, take the next

smallest size. Also, record micro-ohms per centimeter.

AWG = #19

Bare, Aw(tt} = 0.00653, [cm2 ]

Insulated, Aw = 0.00754, [cm2 ]

= 264, [micro-ohm/cm]
cm

Step No. 9 Calculate the effective window area, Wa(eff). Use the window area found in Step 6. A typical

value for, S3, is 0.75, as shown in Chapter 4.

Wa(eff)=WaS,, [cm2]

«V/)=(2-34)(°-75), [cm2]

WaW=\.16, [cm2]

Step No. 10 Calculate the number turns possible, N, using the insulated wire area, Aw found in Step 8. A

typical value for, 82, is 0.6, as shown in Chapter 4.

N = "(eff} 2 , [rums]
Aw

(1.76)(0.60)
vV = V-ZA r-> [to115](0.00754)

N = 140, [turns]

Step No. 1 1 Calculate the required gap, lg.

Ĵ,lg= - Z -- — , [cm]

/ (1.26)(140)2(L25)(10-8) / 9.22 >|
g (0.0025) '

/g=0.120, [cm]

Step No. 12 Calculate the equivalent gap in mils.

mils = cm(393.7)

mils = (0.120)(393.7)

mils = 47.2 use 50
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Step No. 13 Calculate the fringing flux factor, F.

(0.120) (2(2.84}
- l V '

11.25 ( 0.120

Step No. 14 Calculate the new number of turns, Nn, by inserting the fringing flux, F.

/ L
Nn = *—. r, [turns]

\ 0.4*4 ̂ K8)
I (0.120)(0.0025)

AT, =116, [turns]

Step No. 15 Calculate the winding resistance, RL. Use the MLT, from Step 5, and the micro-ohm per

centimeter, from Step 10.

), [ohms]

RL = (8.3)(ll6)(264)(lO~6), [ohms]

RL = 0.254, [ohms]

Step No. 16 Calculate the copper loss, Pcu.

Pa,=lL*L, [watts]

PC1I =(1.51)2(0.254), [watts]

Pm = 0.579, [watts]

Step No. 17 Calculate the regulation, a.

a =^(100), [%]
o

(0.579)

a=^ ^(100)

a =0.579, [%]

Copyright © 2004 by Marcel Dekker, Inc. All Rights Reserved.



Step No. 18 Calculate the ac flux density, Bac.

• fteslal
p. )

(0.120)+ - —V ' 1,2500

Bac= 0.0167, [tesla]

Step No. 19 Calculate the watts per kilogram for ferrite, P, material in Chapter 2. Watts per kilogram can

be written in milliwatts per gram.

mW/g = (0.00004855)(200000)(1 63) (0.0167 )(

mW/g = 0.468

Step No. 20 Calculate the core loss, Pfe.

l O - 3 , [watts]

pfe = (0.468)(60)(lO~3), [watts]

Pfe= 0.0281, [watts]

Step No. 21 Calculate the total loss copper plus iron, PE.

P^Pfe+Pcv, [watts]

Pz =(0.0281) + (0.579), [watts]

PE = 0.607, [watts]

Step No. 22 Calculate the watt density, v|/. The surface area, A,, can be found in Step 5.

p
<//=—, [watts/cm2]

4
(0.607)

w = —, r-, [watts/cm" ]
(69.9)

V/ = 0.00868, [watts/cm2]
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Step No. 23 Calculate the temperature rise, Tr.

Tr =450(0.00868)(°826),

Tr = 8.92, [°C]

Step No. 24 Calculate the peak flux density, Bpk.

' [tesla]

(0.127)+ -—V ' (2500)

Bpk = 0.252, [tesla]

Step No. 25 Calculate the effective permeability, |Lie. Knowing the effective permeability, the ETD-39

ferrite core can be ordered with a built in gap.

(2500)

9.22

jue = 74.5 use 75

Step No. 26 Calculate the window utilization, Ku.

K
=

_(116)(0.00653)
K" = (234)

A:,, = 0.324
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