
934 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 5, MAY 2014

On the Impact of Approximate Computation in an
Analog DeSTIN Architecture

Steven Young, Student Member, IEEE, Junjie Lu, Student Member, IEEE,
Jeremy Holleman, Member, IEEE, and Itamar Arel, Senior Member, IEEE

Abstract— Deep machine learning (DML) holds the potential
to revolutionize machine learning by automating rich feature
extraction, which has become the primary bottleneck of human
engineering in pattern recognition systems. However, the heavy
computational burden renders DML systems implemented on
conventional digital processors impractical for large-scale prob-
lems. The highly parallel computations required to implement
large-scale deep learning systems are well suited to custom hard-
ware. Analog computation has demonstrated power efficiency
advantages of multiple orders of magnitude relative to digital
systems while performing nonideal computations. In this paper,
we investigate typical error sources introduced by analog compu-
tational elements and their impact on system-level performance
in DeSTIN—a compositional deep learning architecture. These
inaccuracies are evaluated on a pattern classification benchmark,
clearly demonstrating the robustness of the underlying algorithm
to the errors introduced by analog computational elements.
A clear understanding of the impacts of nonideal computations
is necessary to fully exploit the efficiency of analog circuits.

Index Terms— Analog circuits, analog computation, deep
machine learning, feature extraction, floating gates.

I. INTRODUCTION

THE mainstream approach for coping with high-
dimensional observations has been to employ feature

extraction to preprocess the data, reducing its dimensionality
to a level that can be effectively processed. As a result, it can
be argued that the intelligence behind many pattern recognition
systems has shifted to the human-engineered feature extraction
process, which can be challenging and highly application-
dependent. Moreover, if incomplete or erroneous features are
extracted, performance will suffer.

A key factor in realizing deep learning architectures is
the resource complexity involved in their training [1]. The
computational complexity and storage requirements from deep
reinforcement learning systems limit the scale at which they
may be implemented using standard digital computers. Custom
analog circuitry presents a means of overcoming the limita-
tions of digital very-large-scale integration (VLSI) technology.

Manuscript received November 19, 2012; revised September 13, 2013;
accepted September 17, 2013. Date of publication October 10, 2013; date
of current version April 10, 2014. This work was supported in part by the
Intelligence Advanced Research Projects Activity via Army Research Office
under Grant W911NF 12-1-0017 and in part by NSF under Grant CCF-
1218492.

The authors are with the Department of Electrical Engineering and Com-
puter Science, The University of Tennessee, Knoxville, TN 37996 USA
(e-mail: syoung22@eecs.utk.edu; jlu9@eecs.utk.edu; jhollema@eecs.utk.edu;
itamar@eecs.utk.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2013.2283730

In order to achieve the largest possible learning system within
any given constraints of cost or physical size, it is critical that
the basic building blocks of the learning system be as dense as
possible. Many operations can be realized in analog circuitry
with a space saving of 1–2 orders of magnitude compared to a
digital realization. Analog computation also frequently comes
with a significant reduction in power consumption, which will
become critical as powerful learning systems are migrated to
battery-operated platforms.

This massive improvement in density is achieved by utiliz-
ing the natural physics of device operation to carry out com-
putation. The benefits in density and power come with certain
disadvantages, such as offsets and noise. However, in many
cases the feedback inherent to the learning algorithms naturally
compensates for inaccuracies introduced by the analog circuits.
Similarly, the brain is known to be built from noisy inaccurate
neurons. For example, many behavioral responses, such as
a fly making a course correction after a disturbance, occur
over a period of around 30 ms [2]. Neural signals integrated
over comparable time windows typically exhibit a signal-noise
ratio (SNR) in the range 1–10 [2]–[4], which is much lower
than what can be easily achieved in moderate precision analog
electronics (e.g., 8-bit analog-to-digital converters are widely
available and exhibit an SNR of over 256). Comparisons
between the noise and power tradeoffs in analog and digital
circuits and biological systems have also been explored in [5].
The low SNR and outstanding power efficiency of neural sys-
tems suggest that relaxed accuracy requirements for electronic
computational primitives could allow aggressive optimization
for area and power consumption.

This paper describes a study involving the utilization of
analog circuits in implementing deep spatiotemporal inference
network (DeSTIN) [6], [7]—a state-of-the-art deep machine
learning (DML) architecture. The aim of this paper is to
demonstrate the scalability potential of realizing DML using
analog VLSI. The challenge in designing analog circuits for
computational purposes lies in accounting for their various
inaccuracies and inconsistencies on the overall system per-
formance. We thus focus our attention on a detailed analysis
of the implications of realizing each of the key functions
performed by the DeSTIN nodes. Through the application of
the proposed architecture on a common large-scale classifica-
tion problem, very promising implementation characteristics
are demonstrated. Moreover, such designs can be fabricated
using existing VLSI technology, which results in fabrication
time and costs that are the same as digital ASIC designs.

2162-237X © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

YOUNG et al.: IMPACT OF APPROXIMATE COMPUTATION IN AN ANALOG DeSTIN ARCHITECTURE 935

Although the focus of this paper is the implementation of
the DeSTIN architecture in analog circuitry, the results are
relevant to many other DML architectures. Since many DML
architectures do not rely on an extremely precise calculation
of some final result and perform many similar mathematical
operations to those explored here, the results are useful to
explore the feasibility of implementing other DML methods
in analog circuitry.

The remainder of this paper is structured as follows.
Section II provides an overview of DML and the DeSTIN
architecture. In Section III, the key analog circuits constituting
the DeSTIN implementation are described, along with their
typical inaccuracies. Section IV provides a discussion on mod-
eling the inaccuracies at a system level and provides simulation
results that quantify the impact on overall performance in the
context of a large-scale classification task. In Section V, we
present our conclusions and some thoughts regarding future
work.

II. OVERVIEW OF DEEP MACHINE LEARNING

DML architectures have recently emerged as promising
biologically inspired frameworks for effectively modeling
complex signals. The efficacy of machine learning methods
has a strong dependence on the features they are applied to.
Currently, these features are mostly chosen and created using
labor-intensive feature engineering. Deep learning methods try
to learn transformations of the data that form these useful fea-
tures. DML methods can be split into three main approaches:
the probabilistic models (e.g., sparse coding and Boltzmann
machines), the reconstruction-based algorithms (e.g., auto-
encoders), and manifold-learning approaches [8]. They have
achieved state-of-the-art results on benchmarks spanning a
broad range of application domains [9], [10]. In DML, a hierar-
chical architecture for information representation is employed
whereby higher layers of the hierarchy represent broader and
more abstract concepts pertaining to the signal modeled. In
addition to the natural high dimensionality of real-life data,
the temporal component also plays a key role. A sequence of
patterns that a human observes often conveys a meaning to
the observer, whereas independent fragments of this sequence
would be hard to decipher in isolation. Humans often infer
meaning from events or observations that are received close
in time. To that end, modeling the temporal component of
the observations plays a critical role in effective information
representation. Capturing spatiotemporal dependencies, based
on regularities in the observations, can therefore be viewed as
a fundamental goal for deep learning systems.

Compositional deep learning architectures are a particular
family of DML systems. They are characterized by hosting
multiple instantiations of a basic cortical circuit (or node)
which populate all layers of the architecture. Each node is
tasked with learning to represent the sequences of patterns
that are presented to it by a unique subset of nodes in the
layer that precede it. The nodes at the very lowest layer of
the hierarchy receive as input raw data (e.g., pixels of the
image) and continuously construct a belief state that attempts
to compactly characterize the sequences of patterns observed.

The second layer, and all those above it, receive as input
the belief states of nodes at their corresponding lower layers,
and attempt to construct their own belief states that capture
regularities in their inputs. Information flows both bottom up
and top down. Bottom-up processing essentially constitutes a
feature extraction process in which each layer aggregates data
from the layer below it. Top-down signaling helps nodes in
lower layers improve their representation accuracy by assisting
in correctly disambiguating distorted observations.

The goal of the learning process in an unsupervised DML
architecture is to form a hierarchical feature space that can be
employed by classification or regression models. The learning
process at each node is unsupervised, guided by exposure to
a large set of observations and allowing the salient attributes
of these observations to be captured across the layers. This
extracted information should exhibit invariance to common
distortions and variations in the observations, leading to repre-
sentational robustness. In the context of visual data, robustness
refers to the ability to exhibit invariance to a diverse range
of transformations, including mild rotation, scale, different
lighting conditions, and noise.

It should be noted that, although deep architectures may
appear to completely solve or overcome the curse of dimen-
sionality, in reality they do so by hiding the key assumption
that some structure or locality exists in the data, which allows
sparsity to exist in the architectures. The latter means that
the dependencies that may exist between two signals (e.g.,
pixels) that are spatially close are captured with relative detail,
whereas relationships between signals that are distant (e.g.,
pixels on opposite sides of a visual field) are represented
with very little detail. This is a direct result of the nature
of the contracting hierarchical architecture, in which fusion of
information from inputs that are distant to the hierarchy occurs
at the higher layers. It is also important to emphasize that deep
learning architectures are not limited by any means to visual
data, but to any data where there is some kind of structure
or locality such as music audio [11]. These architectures are
modality agnostic, and attempt to discover the underlying
structure in data of any form [10].

A. Scalability Issues With Software Realizations of DML

Deep layered architectures offer excellent performance
attributes. However, the computation requirements involved in
training and utilizing them grow dramatically as the dimen-
sionality of the input space increases. Compositional deep
layered architectures compose multiple instantiations of a
common cell—the node. In CPU-based platforms, in contrast
to the inherent concurrency of deep layered architectures,
processing is performed sequentially, thereby greatly increas-
ing the execution time. This is the reason why many recent
efforts have been directed toward implementing DML architec-
tures using graphic processing units (GPUs) [12]. While GPUs
outperform CPU-based realizations, both in computation time
and cost/performance ratio, they consume a large amount of
power. Custom hardware presents the opportunity to achieve
large power savings over a GPU implementation. GPUs are
designed to perform 32-bit accurate computations. However,

936 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 5, MAY 2014

Fig. 1. DeSTIN hierarchical architectures employed for visual sensory
processing.

as we explore later, the actual accuracy needed in a DML
architecture may be much less than that. Thus, by taking
advantage of these relaxed accuracy constraints and leveraging
a physical circuit designed specifically for the task at hand,
orders of magnitude in power savings can be realized.

B. DeSTIN Architecture

The DML architecture considered here is the DeSTIN archi-
tecture, first introduced in [6]. DeSTIN comprises multiple
instantiations of an identical cortical circuit, or node. Each
node is a parameterized model which learns by means of an
unsupervised learning process. These nodes populate all layers
of the hierarchy where every node attempts to capture the
salient spatiotemporal regularities exhibited by patterns it is
presented with. The nodes at the lowest layer of the hierarchy
receive as input raw sensory data (e.g., pixels of an image) and
continuously construct a belief state that attempts to character-
ize the sequences observed. The inputs to all layers other than
the first are the belief states of nodes at their corresponding
lower layers. The beliefs formed across the hierarchy are then
used as rich features provided to a classifier or regression
learner that can be trained using supervised learning.

Hence, the core process performed at each node is updating
of its belief construct. This update rule is expressed through
the following conditional probability function, which is based
on the probability of an observation given a particular system
state, Pr(o|s′); the probability of that system state given a
previous state and some higher layer advice, Pr(s′|s, a); and
the belief state of a previous state, b(s):

b′(s′) =
Pr(o|s′)

∑

s∈S

[
Pr(s′|s, a)b(s)

]

∑

s ′′∈S

[
Pr(o|s′′)

∑

s∈S

[Pr(s′′|s, a)b(s)]

] (1)

which maps observation o, belief b (which is a function of the
system state s), and a high-layer node’s belief (i.e., advice) a to
a new (updated) belief state b′(s′). The denominator is a nor-
malization factor. This equation can be viewed as a posterior

over the observations Pr(o|s′) that is modulated by a construct
that reflects the system dynamics

∑
s∈S Pr(s′|s, a)b(s). These

two building blocks of the architecture are the pieces of
information which must be learned from the data.

An online clustering algorithm based on the winner-take-
all (WTA) competitive learning approach is employed in
order to learn Pr(o|s′) [13]. This clustering algorithm captures
regularities in the inputs by forming centroids characterized by
a mean μ and variance σ 2 in each dimension.

In order to facilitate an analog implementation, several
simplifications have been made to the original version of the
clustering algorithm used in DeSTIN. The winning centroid is
chosen based solely on the Euclidean distance. The distance dx

between a centroid x and an observed input o is expressed as

dx = ‖o − μx‖ψx . (2)

The starvation trace ψ is a technique employed by the
clustering algorithm to include centroids which are initialized
too far from regions of density in the observation space,
and are thus at risk of never being selected for update. This
allows idle or starved centroids to shrink their apparent
distance to all input vectors over time when they are not the
selected centroid, and increase the apparent distance when
they are the selected centroid. A starvation trace value ψc

is maintained for each centroid and is decayed by a small
constant 0 ≤ γ ≤ 1 each time that centroid is not updated
and increases once the centroid is selected, as reflected by

ψc = γψc + (1− γ)�x=c (3)

where x represents the chosen centroid. The starvation trace
modulates the distance calculation and thus gives “starved”
centroids an opportunity to move toward data samples. The
estimated mean of the winning centroid, μx , is updated
toward the current input in conjunction with estimated
variance σ 2

x such that

μx ← μx + α(o − μx) (4)

σ 2
x ← σ 2

x + β
[
(o − μx)

2 − σ 2
x

]
(5)

where α and β are positive numbers close to 0. The posterior
distribution Pr(o|s′) is then obtained using the normalized
Euclidean distance between the input and each centroid s,
such that

ns =
d∑

i=1

(oi − μi,s)
2

σ 2
i,s

(6)

ps = n−1
s∑

s ′∈S

(n−1
s ′)

. (7)

Most relevant to this paper is the fact that DeSTIN offers
low sensitivity to many of the typical errors inherent in
analog computation hardware. For example, it is of low
importance that each node partitions the inputs into a specific
set of centroids. Rather, it is imperative that the centroids
found represent some regularities pertaining to the underlying
structure of the observations. As a result, many of the gain
(i.e., multiplicative) and offset (i.e., additive) errors that are

YOUNG et al.: IMPACT OF APPROXIMATE COMPUTATION IN AN ANALOG DeSTIN ARCHITECTURE 937

inherent in analog devices do not prevent the nodes from
forming meaningful beliefs, as discussed in more detail below.
It is also not important that the centroids be located perfectly
in the computed mean point they represent or that they are
paired with precise estimates of the variances. Thus, updates
in the estimates of the means and variances can be subject
to error while still allowing the centroids to yield meaningful
beliefs. Since no external mechanism has direct access to the
centroids, the consequences of a bias errors on the inputs are
marginal given that the error will map all inputs to a new
space. Inaccuracies that result in gain differences between the
various dimensions of the centroids may alter the centroids that
are formed, but do not prevent the system from discovering
and representing regularities in the data. Sensitivity analysis
with regard to gain and bias errors is important in mapping
an algorithm to an analog architecture. Since the primary
goal of DeSTIN is to form meaningful beliefs that capture
regularities in the data, the architecture is relatively insensitive
to the errors an analog implementation typically injects into
the computation processes involved.

III. ANALYSIS OF ANALOG COMPUTATION

As mentioned above, large-scale DML systems have the
potential to be uniquely effective at solving complex high-
dimensional problems. However, their computational com-
plexity limits the scale at which they may be implemented
in standard digital computers. We next focus on the design
and study of custom integrated circuits which facilitate the
realization of a large-scale DML architecture. In order to
achieve the largest possible learning system within any given
constraints of cost, power consumption, or physical size, it is
critical that the basic building blocks of such system be as
compact and efficient as possible.

Many operations can be realized in analog circuitry with a
space and power saving of up to three orders of magnitude
compared to a digital implementation [14]–[17]. For example,
simulations of the analog circuit shown in Fig. 8, which imple-
ments the function x2/y, and a digital circuit with equivalent
resolution and functionality indicate that the analog circuit
consumes more than an order of magnitude less energy per
operation than the digital circuit. Such savings can be critical
in large-scale data-mining operations, where data throughput is
often limited by power dissipation [18]. Additionally, ultralow-
power learning systems will enable the embedding of powerful
learning functionality into battery-operated portable devices.

The cost of these power and area savings is computation
that is altered by error sources intrinsic to analog operation
of the transistors. While designing computational circuits for
minimum power and area, the circuit designer must avoid
introducing errors that will severely degrade the learning
performance of the larger system. In this section, we examine
the impact of analog circuit nonidealities on learning perfor-
mance to provide guidance to circuit and system designers,
allowing them to aggressively optimize circuit design for
density or power consumption while maintaining sufficient
learning performance. We next outline the key computational
building blocks and their analog hardware considerations.

Fig. 2. (a) Bump circuit, which computes tanh(V1 − V2) and its derivative
simultaneously. (b) Floating-gate memory using feedback for improved update
linearity.

A. Analog Computational Elements

The basic computations needed by machine learning algo-
rithms include storage, multiplication, addition, activation
functions, and similarity calculations, all of which can be
realized in a compact and power-efficient manner with analog
circuits. For example, the differential pair, a mainstay of
classical analog design, provides a tanh(·) function at its output
current. The addition of two more transistors yields a “bump
circuit” [19], shown in Fig. 2, which computes the derivative of
tanh(·). The bump circuit simultaneously provides a measure
of similarity between two inputs and the tanh(·) of their
difference. The bump function can also be used as a probability
distribution, as it peaks with zero difference and saturates to
zero for large differences.

The bump circuit illustrates the power advantage that analog
computation holds over digital methods. A bump circuit,
biased at 200 fA, can evaluate the similarity between a stored
value and about 200 observations per second, according to
simulations using 0.24-μm transistors. A single inverter con-
sumes about four times that much current when switching at
200 Hz, and about half that much statically, without switching
at all. To perform a comparable computation digitally would
require dozens more transistors and one to two orders of
magnitude more current. Higher clock frequencies can allow
digital systems to perform more operations per unit of energy,
but system-level issues such as latencies in memory access and
delay variations result in faster digital circuits waiting—and
leaking current—for significant amounts of time, thus reducing
efficiency.

Summation is trivial in the current domain, as it is accom-
plished by joining the wires with the currents to be summed. In
the voltage domain, a feedback amplifier with N+1 resistors in
the feedback path can compute the sum of N inputs. A Gilbert

938 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 5, MAY 2014

Fig. 3. Block diagram of an analog clustering circuit. oi refers to the
dimension i of the input.

cell [20] provides four-quadrant multiplication while using
only seven transistors.

B. Floating Gate Storage and Adaptation

Floating gates have proved themselves useful in many
different applications, such as programmable switches [21],
threshold matching in transistor circuits [22], and as a storage
element in analog adaptive systems [23]–[26]. In learning
systems, a floating gate can be used to store a weight or
learned parameter. Since floating gates are electrically isolated
by silicon dioxide, they retain a fixed quantity of charge
under normal conditions, providing an analog nonvolatile
memory. Through Fowler–Nordheim tunneling, or hot electron
injection, charge can be added to or removed from the floating
gate. The stored value can be read out as a voltage or current.
Nonlinearities in the update mechanisms can be mitigated
using feedback linearization [25], [27] or predistortion [16].
In this paper, we propose to employ floating gate memories
to store learned centroids.

C. Mapping Architecture to Circuits

A generic clustering architecture is illustrated in Fig. 3,
showing an N-dimensional input and M centroids. For the
purpose of this analysis, we will assume a discrete-time clus-
tering process. The inputs are the observations o0:N−1 and the
outputs are the class probabilities p0:M−1. The N-dimensional
input is classified on the basis of the distance between the
observation and the respective centroids μ0:M−1. Each input
oi is compared to the corresponding component μi, j of every
centroid to produce a 1-D distance di, j . The 1-D distances
are then squared and summed across the input dimensions to
yield a total distance D j between the observation and each
centroid. The distances are then compared to each other and
converted into class probabilities p0:M−1. A variety of distance
functions, or equivalently similarity functions, may be used.
The memories constituting each centroid are then updated
based on the respective class probability, such that the new
value of a given memory element is a function of the previous
value and the set of centroid-observation distances. One step

of the complete clustering process can be represented using
general mapping functions by the following steps:

di, j = f1(oi , μi, j) (8)

D j = f2(d0:N−1, j) (9)

p0:M−1 = f3(D0:M−1) (eqs. 6&7) (10)

μi, j [t + 1] = f4(μi, j [t], oi [t], D0:M−1[t]). (11)

In order to analyze the effects of no-ideal computations, we
will use representative cases for the general equations shown
in (8)–(11). Employing the Euclidean distance and a moving
average update rule for estimating the variances, as mentioned
above, we obtain the following set of equations:

di, j = (oi − μi, j)
2

σ 2
i, j

(12)

σ 2
i, j [t + 1] = σ 2

i, j [t] + λσ
((

oi − μi, j
)2 − σ 2

i, j [t]
)

(13)

D j =
∑

i=0:N−1

di, j (14)

p0:M−1 = f3(D0:M−1) (eqs. 6&7) (15)

μi, j [t + 1] =
{
μi, j [t]+λ(oi−μi, j), if D j = min(D0:M−1)

μi, j [t], otherwise.

(16)

Here di, j is the 1-D distance between the i th component
of the observation and the corresponding component of the
j th centroid. D j is the distance from the observation and
the j th centroid, aggregated across dimensions. The standard
deviation of the i th dimension of all observations attributed
to the j th centroid is represented by σi, j , such that �σ0:N−1, j

is the diagonal of the covariance matrix of the data attributed
to centroid j . The memory value μi, j is the learned value
of the i th element of the j th centroid. The learning rates
are represented by λ and λσ for the centroid location and
the centroid standard deviation, respectively. Note that the
operations involved in realizing these equations are merely
addition, subtraction, multiplication, division, and absolute
value. The first two operations are trivial in current domain,
while the others can be implemented quite effectively, as
discussed next.

D. Analog Error Sources

The analog error sources of primary concern are mismatch
and noise. Random variation or mismatch occurs as a result of
manufacturing variation in circuit components [28, Sec. 9.7].
Variation in the threshold voltage of MOS transistors is the
predominant source of mismatch. Because a modification to
the threshold voltage has the same effect on circuit behavior
as a shift in the gate voltage, threshold variation results in an
bias error for voltage-mode signals. Typical values range from
a few millivolts to tens of millivolts. In the case of current-
mode signals, the effect of threshold variation depends on the
transistor’s operating region. However, analog circuits most
often employ weak inversion (subthreshold) operation due to
the computational flexibility of the exponential current–voltage
relationship in weak inversion [29, Ch. 3]. IDS = ISeVGS/UT ,

YOUNG et al.: IMPACT OF APPROXIMATE COMPUTATION IN AN ANALOG DeSTIN ARCHITECTURE 939

where IS is a device-specific constant, UT is the thermal volt-
age kB T/q (about 25 mV at room temperature), and VGS is the
gate–source voltage. Even though the notion of a “threshold
voltage” is not precisely applicable to subthreshold operation,
variations in the physical properties that are manifested in the
threshold voltage still have the same effect as a shift in the gate
voltage. Therefore, we can represent the current in a transistor
with a shift in the threshold (relative to the mean value) as

IDS = ISe
VGS−�V

UT = ISe
VGS
UT e

−�V
UT

where �V represents the variation in threshold voltage. It can
be seen that the term exp−�V/UT results in a gain error
that will be applied to any input signal. Threshold voltage
variations in the range 5–50 mV will result in gain errors
ranging from 1.2 to 7.4 (or 0.14–0.85 for negative shifts).

We can represent the gain errors typical of current mode
signals as x ′ = αx , where x is the ideal value and x ′ is the
actual value. Similarly, the bias errors common to voltage-
mode signals can be represented as x ′ = x + β. The gain and
offset, represented by α and β, are random variables, with
means of unity and zero, respectively.

We now describe the effects of transistor mismatch on the
clustering process. Most of the error sources will, in general,
not be correlated across either the dimensions or the centroids
because the errors are generated by independent transistors,
so the error term for each unit may be considered as an
independent and identically distributed variable. The standard
deviation of threshold voltage is inversely proportional to the
transistor’s area, so performance can be improved by using
large transistors. Thus, a reduction in the errors comes at the
cost of decreased density and increased capacitance, which in
turn degrades bandwidth and computational throughput.

Input Variation: Each dimension of the input signal must
be copied to each of the centroids. In current-mode signaling,
this will be accomplished via a current mirror, and the input
will be multiplied by a gain error. With voltage signaling, the
same input can be physically shared between centroids without
explicit copying, and this error source is avoided. This varia-
tion will in general not be correlated either across dimensions
or across centroids. This results in modifications to (12) and
(16) such that for a gain variation di, j = f (αi

i, j oi , μi, j) and
μi, j [t+1] = g(μi, j [t], αi, j oi [t], D j [t]). In this case, the factor
αi

i, j is the same in both equations but will be different for every
centroid and for every dimension within a centroid.

Fig. 4 shows the variation of signals distributed through a
current mirror as both current and transistor area are varied.
As can be seen, current has only a modest effect on mismatch
in the subthreshold regime. As the bias current is increased
into the microampere range, the transistor will enter strong
inversion and the effect of threshold variation will diminish.
However, to minimize power consumption in systems with
many thousands of nodes, individual transistor currents must
be maintained at a much lower level. In contrast, current
mismatch displays a nearly ideal inverse relationship with
transistor area, as predicted by [30], with errors below 20%
attainable with an area of 1 μm2. Current mismatch can
occur in many locations throughout a computational circuit,

Fig. 4. Simulated current mirror mismatch as a function of (top) bias current
with area fixed at 1 μm2 and (bottom) transistor area with current fixed at
1 nA. Mirror mismatch is plotted as the ratio of the standard deviation of a
current signal to its mean.

as described below. Because the underlying mechanism is the
same as that for a current mirror, the error magnitudes can be
expected to be similar to that shown in Fig. 4.

If this input variation is modeled as a bias error, it has
no system-level impact. In this case it will simply shift the
location of the origin of the input space. Since the clustering
is concerned solely with the distance between the centroids and
the input, this error will have no effect on this relationship and
thus no effect on the ultimate output of the clustering node, the
belief state. If this error is modeled as a gain error, it will have
the effect of giving certain dimensions of the input more or
less weight in the distance calculations and in the calculation
of the belief state. The impact of this error will be dependent
on the characteristics of the true data clusters. If they are well
separated, no significant impact should be expected. If they
are not, the system could characterize the input in a different
manner than expected if each input dimension were given
equal weight as demonstrated in Fig. 5.

Update Asymmetry and Variation: Mismatch in the update
mechanisms may result in asymmetric updates, such that
increments to a given memory are of a different magnitude
than decrements. Also, because of variation in the update
mechanism, the update rate may vary from one memory cell
to another.

940 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 5, MAY 2014

Fig. 5. Input gain. Gain errors can cause the input to form centroids in a
skewed space. This figure demonstrates the effect of a gain error that is too
large, 4x , in the second dimension of each centroid versus a case with no
gain error.

An asymmetric error will have some system-level impact.
During the transient stage of centroids moving toward their
clusters, this error will simply cause the learning rate to be
modified. During the steady-state stage of centroids learning
the mean and variance of their clusters, this will cause the
mean to be offset within the cluster and the calculated variance
to be larger. The expected offset is expected to be proportional
to the mismatch between increment and decrement learning
rates, λ+ and λ−, respectively. Assuming the increment is
larger than the decrement, if the number of increments and
decrements are equal, the centroid will move upward. How-
ever, as the centroid moves upward, the number of decrements
will increase and cause the centroid to reach equilibrium

λ+Pr(X > μ) = λ−Pr(X < μ). (17)

A demonstration of this effect can be seen in Fig. 6. Variation
in the update rate between memory cells will have the effect
of some centroids converging toward their equilibrium faster
than others. This will have no effect on the equilibrium state of
the centroids and no significant effect on the learning transient
except in extreme cases.

Memory Adaptation Variation: Each analog memory cell
will tend to converge toward the inputs applied to it when it is
updated. Input-referred offset or gain error here will cause the
memory to converge to a value different than the actual mean
of the cluster it is learning. This error, αm

i, j , can be represented
by modifying the error term applied to the observation for the
update equation with respect to that applied for the distance
measurement

μi, j [t+1]=
{
μi, j [t]+λαm

i, j (oi−μi, j), if Dj = min(D0:M−1)

μi, j [t], otherwise.
(18)

If the memory adaptation variation is modeled as a gain
error as in (18), it will have the effect of increasing or
decreasing the learning rate. Much like the update variation
error, it will have little to no effect except in extreme cases.
However, if this error is modeled as an bias error, it will have
the effect of shifting the learned centroid by the amount of

Fig. 6. Centroid offset. As the size of the increments relative to the
decrements becomes larger, the centroid becomes more offset from the true
center of the data. Depending on the nature of the data being clustered over,
the amount of error that is acceptable may vary. It is also important to
remember that extremely accurate clustering is not needed, and even with
fairly inaccurate clustering meaningful beliefs can be calculated.

Fig. 7. Memory adaptation bias. This figure demonstrates what happens when
one centroid has a bias error in the memory adaptation. In this figure, Centroid
B has a bias error toward the top right of the plot. As it moves toward the other
data cluster, it swaps positions with Centroid A before reaching a steady-state
position offset from its data cluster by approximately the magnitude of the
bias error.

the error. For small errors, this will have a small effect on the
calculation of the belief state. When the error becomes larger,
it can cause a centroid to walk far away from the data cluster
it is supposed to represent and possibly toward another data
cluster. The effect of such a case is demonstrated in Fig. 7.

Distance Error: The distance measurement circuits may
exhibit gain and/or offset errors. Variation within a given
centroid could result in one dimension contributing dispro-
portionately to the overall distance between an observation
and an input. Circuitry accepting the individual 1-D inputs
will contribute to error uncorrelated across dimension within
a given centroid. Circuitry operating on the aggregated dis-
tance will contribute to an error that affects each dimension
identically. We will represent gain and offset error in the
1-D distances by αd

i, j and βd
i, j , respectively, which will include

components that are uncorrelated across dimensions as well as
correlated components. As a point of reference, the output of

YOUNG et al.: IMPACT OF APPROXIMATE COMPUTATION IN AN ANALOG DeSTIN ARCHITECTURE 941

Fig. 8. Translinear circuit for computing x2/y needed to obtained the
Mahalanobis distance and belief calculation from (6) and (7).

Fig. 9. Illustration of a distance calculation error within the clustering
process. . Centroid B has an error causing it to appear artificially more distant
from any input. This results in Centroid A to claiming some observations that
should belong to Centroid B.

the distance computation shown in Fig. 8 has a normalized
standard deviation (σ/μ) of about 2.7%.

For reasonable error levels, distance error has the effect of
giving one dimension more or less importance is the centroid
selection process much like the case of the input gain error
demonstrated in Fig. 5.

Distance Comparison: There may be input-referred offset in
the distance comparison block, typically implemented as either
a WTA circuit for similarity or a loser-take-all for difference.
The effect of this can be expected to be similar to a distance
error that is identical for all dimensions of a given centroid but
varies across centroids. Gain errors in the distance comparison
circuitry are denoted as αD

j .
On a system level, distance comparison error will have

the effect of causing inaccurate belief state calculations and
making a centroid appear artificially further from (or closer
to) all inputs in the selection algorithm. If this error is small,
it will have no effect since the distance comparison is only
used to select the centroid to update. If the error is larger, a
centroid could become starved until this distance comparison
error comes into equilibrium with the starvation trace. Once
this equilibrium is reached, the centroid will still claim fewer
input vectors than it should, since its starvation trace cannot
remain small enough to claim input vectors without allowing
other centroid to claim more input vectors. This effect is
demonstrated in Fig. 9.

Fig. 10. Modeling of the current noises in a transistor as a function of bias
current. (a) Shot noise. (b) Flicker noise. (c) Total integrated RMS noise.

Memory Leakage: Some analog memory cells, such as
switched-capacitor cells or floating-gate memories with thin
gate oxides [31], gradually lose charge from the storage
node, resulting in an undesired change to the stored centroid
locations. The stored value may drift toward either of the
supply rails or, less frequently, toward an equilibrium level in
the middle of the storage range. Because the leakage occurs
even in the absence of intentional updates to the memory,
its magnitude is dependent on the frequency of updates;
increased time between updates results in increased leakage.
Assuming that the operating frequency is constant, memory
leakage γ lk

i, j results in a modification to (16): μi, j [t + 1] =
g(μi, j [t], oi [t], D j [t])+ γ lk

i, j . Because floating-gate memories
utilizing thick-oxide transistors [25], [32] can effectively elim-
inate leakage, we will not further address it in this paper.

Noise: Each of the signals is an analog current or voltage
and is thus subject to additive noise. The noise is typically
Gaussian. It may be spectrally white, such as shot noise
and thermal noise, or pink concentrated at low frequencies,
such as flicker noise. In a metal–oxide–semiconductor field-
effect transistor biased in the subthreshold region, the primary
noise sources are shot noise and flicker noise. Shot noise
stems from individual electrons flowing through a junction
at random intervals. It is a broadband white noise with
power density given by I 2

n,shot = 2q ID , where ID is the
dc bias current. As bias current increases, the shot noise
power increase with ID while the signal power increase
with I 2

D , making it possible to trade power consumption
with SNR. At low frequencies, flicker noise dominates. It
has a 1/ f power law and can be attributed to the fluctua-
tion of number of carriers and/or their effective mobility in
the channel. Its power density is inversely proportional to
the size of the transistor and proportional to the square of
bias current, I 2

n,flicker = K f I 2
D/A, where K f is a process-

942 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 5, MAY 2014

Fig. 11. SNR as a function of bias current in the analog floating-gate memory.

dependent fit constant and A is the area of the transistor.
In Fig. 10(a) and (b), the expected noise currents as a function
of bias current in a 1 − μm2 sized transistor based on the
models described above are compared to the simulation results
obtained using foundry-provided models and show good agree-
ment. The high-frequency drain current noise simulations indi-
cated excess noise beyond that predicted by the shot current
model. This excess noise is fitted using a correction factor of
1.2 applied to the shot noise model. The total root-mean-square
(RMS) noise current can be obtained by integrating shot and
flicker noise respectively over the system noise bandwidth and
then adding them in power. The result from our noise model
is compared to the simulation and shows a good agreement,
as in Fig. 10(c).

Based on the analysis on a single transistor above, it can
be seen that there exists a tradeoff between the SNR and
the power consumption. This can be illustrated in Fig. 11.
In the figure, the SNR of the floating-gate memory shown in
Fig. 2 is plotted against its bias current, which is proportional
to the power consumption. From this noise versus power
tradeoff, designers can estimate the available room for power
scaling down given the lower boundary of SNR acceptable
by the learning algorithm. The continuous-time noise in the
current or voltage signal is converted into a discrete-time noise
process when the signal is effectively sampled by the distance
comparison to determine the class probabilities and centroid
updates. For the purposes of this investigation, we will assume
that this sampling results in a white noise sequence.

Noise should have no effect on the calculated centroid
means since it is a zero-mean process. For clusters with a
smaller variance than the noise level, the calculated variance
will be similar to the noise level rather than similar to the true
variance. If the true variances are less than the noise level
for all centroids, then the beliefs will be calculated on the
basis of a distance measure that is approximately the Euclidean
distance than the normalized Euclidean distance because of the
inaccurate calculated variances. The beliefs will then have less
information than they otherwise would, but the beliefs will still
be meaningful because of the accurate mean values.

Incorporating the nonideal effects into (19)–(23) yields the
following relationships, where any nx denotes additive noise
occurring at the same location in the circuit where αx occurs:

di, j =
(αi

i, jα
d
i, j oi − μi, j + no

i, j [t])2
σ 2

i, j

+ nd
i, j [t] (19)

Fig. 12. (a) Clean and (b) noisy synthetic clustering data used for evaluation
of analog computation inaccuracies.

D j =
∑

i=0:N−1

αD
j di, j + nD

i, j [t] (20)

p0:M−1 = f3(D0:M−1) (eqs. 6&7) (21)

δi, j = (αi
i, jα

m
i, j oi − μi, j) (22)

μi, j [t + 1]

=

⎧
⎪⎨

⎪⎩

μi, j [t] + λ+i, j δi, j + γ lk
i, j ,

{
j:D j <Dk∀k 	=j,oi >μi, j

}

μi, j [t] + λ−i, j δi, j + γ lk
i, j ,

{
j:D j <Dk∀k 	=j,oi <μi, j

}

μi, j [t] + γ lk
i, j , otherwise.

(23)

IV. SYSTEM-LEVEL IMPACTS: MODELING INACCURACIES

Given the inaccuracies discussed above, in this section
we examine the impact of error sources on the algorithmic
performance. This is accomplished by using computational
models of the inaccuracies present in analog computation
extracted from transistor-level simulations of the circuit. First,
a metric for algorithmic performance must be defined. Since
the common method for using DeSTIN in pattern recognition
tasks is to extract the beliefs as features, performance is
defined as the mean absolute error (MAE) between what the
ideal belief values should be and those calculated considering
errors in the system. It is important to note that this means
performance is not directly tied to the numerical accuracy
of the calculated centroid means and variances, which are
being calculated in a space altered by the error sources. In
the remainder of this section, we first explore the effects of
the analog error sources on a synthetic dataset in order to
demonstrate the effect on calculated belief states when the
true centroids are known. Then, we present a nonsynthetic
classification problem using the MNIST dataset in which
classification performance is the best metric to evaluate the
success of the system.

To demonstrate the effect of the various errors and mis-
matches, a simple clustering problem is considered. The data
shown in Fig. 12 is clustered using a single DeSTIN node
with varying levels of error and noise. The noise is always
additive Gaussian noise, while gain errors and bias errors are
implemented according to (25) and (25), respectively, where
rx is the difference between the maximum and minimum
values x can take. Noise is added to select signals in the
system in the same manner as bias error. The use of currents
to represent variables generally leads to gain errors, while
voltage-based signals lead to offset errors. We modeled the
cases of full current-mode signaling and full voltage-mode

YOUNG et al.: IMPACT OF APPROXIMATE COMPUTATION IN AN ANALOG DeSTIN ARCHITECTURE 943

Fig. 13. Accuracy versus level of error (σ). Gain errors on clean dataset
(top) and noisy dataset (bottom). This figure illustrates that the update and
input errors have the lowest impact on performance, while noise has the most
significant impact. In addition to the individual effects of each noise, this
figure includes the effect of all the error sources combined and all the error
sources and noise combined.

signaling to explore the different effects. The impact of gain
and offset errors on a system using mixed-mode signaling can
be expected to fall between these two cases

x ′ = xN (1, σ) (24)

x ′ = x +N (0, σ)rx . (25)

The resulting error in the belief is calculated as the MAE
between the ideal belief vector and that obtained using analog
computation. Figs. 13 and 14 illustrate the effect of the
errors discussed in this section on a single node’s belief
values. As can be observed, none of the errors introduces
any notable degradation below a standard deviation value
of 10−3.

When modeling all errors as gain errors, additive noise
in the system has a much larger impact than even the rest
of the errors combined. Thus, it is demonstrated that the
inconsistency caused by noise is much more harmful than
the consistent gain and bias errors. The most destructive gain
errors are the distance comparison, distance, and memory
adaptation variation errors. The update asymmetry, input, and
update variation errors have much less impact.

When all errors are modeled as bias errors, additive noise
has much the same effect as the distance comparison, distance,

Fig. 14. Accuracy versus level of error (σ). Bias errors on clean dataset
(top) and noisy dataset (bottom). The update and input errors have the lowest
impact, while the remaining error components have an impact similar to that
of the additive noise of the same level. In addition to the individual effects of
each noise, this figure includes the effect of all the error sources combined
and all the error sources and noise combined.

and memory adaptation variation errors. The update asym-
metry, input, and update variation errors still have much less
impact.

It is important to remember, however, that “correct” cluster-
ing as defined by the metric used for these clustering datasets is
not necessary for the DeSTIN hierarchy to produce meaningful
beliefs. To test this ability, a full DeSTIN hierarchy is utilized
to form features for a standard multilayer perceptron (MLP)
neural network classifier. The DeSTIN hierarchy used contains
three layers. The top, middle, and bottom layers contain 1,
4, and 16 nodes, respectively, with the nodes in each layer
using 25, 18, and 25 centroids. The belief states are then
sampled from three movements over the image. These beliefs
are then provided to the classifier. Thus, we are testing the
ability of our system which contains noise and errors to form
a model of the regularities it observes and to produce features
for a MLP classifier. The classifier used is a feed-forward
neural network with two hidden layers with 128 neurons in
the first hidden layer and 64 neurons the second hidden layer.
The dataset used is the MNIST hand written digits dataset
[33]. Results are shown in Fig. 15, where the robustness
of the DeSTIN architecture to the gain errors, bias errors,
and additive noise introduced by the analog computation

944 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 5, MAY 2014

Fig. 15. MNIST performance versus system error/noise level. The results
here demonstrate the effect of different error/noise levels when the analog
error and noise sources are modeled in different ways. The best results here
are 97.6%. However, when using a decorrelated ensemble of classifiers and
using elastic distortions [34], results of 99% have been achieved with the
DeSTIN architecture, which is more comparable to state of the art. These
methods were not used to produce this plot, however, in order to produce
results for such a wide range of variables in a timely manner.

models is illustrated. In particular, the errors have little to
no effect until the standard deviation of the errors becomes
larger than the operating range (0–1). High levels of noise
result in inconsistent beliefs that hold less information for the
classification module, as one would expect, but the system can
be seen to be robust to significant levels of noise.

The results from the clustering performance tests and the
MNIST classification test allow some important conclusions
to be drawn. A significant amount of error and noise can be
introduced to the DeSTIN architecture and its clustering algo-
rithm without having a destructive effect upon performance. It
is particularly noteworthy that noise is the most harmful error
source by a significant margin. This is intuitively reasonable,
as noise represents a dynamic error source to which the learn-
ing system cannot adapt. In contrast, the other error sources
distort the input space in a static way, leaving relationships in
the underlying data intact. Even noise does not significantly
degrade MNIST performance for normalized levels below
10−2, corresponding to an SNR of 40 dB. Fortunately, this
modest level of noise performance is easily attainable even
at extremely low current levels in the nanoampere range as
shown in Fig. 11. It is important to consider such implications
when designing analog circuits that retain performance while
maintaining low power and area profiles.

Another aspect that should be better understood is how noise
interacts with the depth of the architecture. It is imperative
that global features generated at the higher layers, which
are subject to errors introduced in the lower layers, remain
meaningful. This is examined in Fig. 16, where classification
results using only the bottom layer belief states are compared
to classification results using the belief states from all layers.
These results clearly demonstrate that features from the upper
layer are able to add global information to the local informa-
tion obtained from the lower layers, across all levels of error
and noise.

Fig. 16. MNIST performance versus error level. Providing the classifier with
belief states from all layers is always better than only providing the belief
states from the bottom layer for every error/noise level. These results are
created with all errors modeled as gain errors and with additive noise.

V. CONCLUSION

This paper explored the promising implications of realizing
deep layered machine learning architectures using custom
analog VLSI. It is argued that the homogeneous nature of
deep architectures, combined with the inherent simplicity in
the computations involved, pave the way for scalable and effi-
cient implementation of such systems using analog circuitry.
While digital circuits have become ubiquitous over the last
two decades in large part because of their simplicity and
repeatability, analog circuits still retain advantages in the con-
text of machine learning systems. Analog computation offers
an improvement in power efficiency over equivalent digital
systems, ranging from an order of magnitude for the simple
x2/y circuit described above to several orders of magnitude for
more complex systems [15], [35]. Such dramatic reductions
in power consumption offer the potential to deliver DML
to severely power-constrained devices such as micro-scale
wireless sensors and implantable medical devices. The analysis
presented here demonstrates that the precision requirements
of machine learning systems are compatible with ultralow-
power analog circuits. In order to leverage the advantages of
analog computation while maintaining excellent performance
on learning tasks, it is critical that system designers understand
the impact of various error sources on system performance.
The results discussed in this paper can help guide designers
so that the resources of power, chip area, and design effort
can be focused on those areas where the impact is greatest.

REFERENCES

[1] D. Erhan, P.-A. Manzagol, Y. Bengio, S. Bengio, and P. Vincent, “The
difficulty of training deep architectures and the effect of unsupervised
pre-training,” in Proc. 12th Int. Conf. Artif. Intell. Stat., Apr. 2009,
pp. 153–160.

[2] W. Bialek, F. Rieke, D. Ruyter, and D. Warland, “Reading a neural
code,” Science, vol. 252, no. 5014, pp. 1854–1857, Jun. 1991.

[3] R. R. de Ruyter van Steveninck, G. D. Lewen, S. P. Strong, R. Koberle,
and W. Bialek, “Reproducibility and variability in neural spike trains,”
Science, vol. 275, no. 5307, pp. 1805–1809, Mar. 1997.

[4] M. van Rossum, B. J. O’Brien, B. J. O’brien, and R. G. Smith, “Effects
of noise on the spike timing precision of retinal ganglion cells,” J.
Neurophysiol., vol. 89, no. 5, pp. 2406–2419, May 2003.

YOUNG et al.: IMPACT OF APPROXIMATE COMPUTATION IN AN ANALOG DeSTIN ARCHITECTURE 945

[5] R. Sarpeshkar, “Analog versus digital: Extrapolating from electronics
to neurobiology,” Neural Comput., vol. 10, no. 7, pp. 1601–1638,
Oct. 1998.

[6] I. Arel, D. Rose, and R. Coop, “DeSTIN: A scalable deep learning archi-
tecture with application to high-dimensional robust pattern recognition,”
in Proc. AAAI Fall Symp. BICA, Nov. 2009, pp. 1150–1157.

[7] I. Arel, D. Rose, and T. Karnowski, “A deep learning architecture com-
prising homogeneous cortical circuits for scalable spatiotemporal pattern
inference,” in Proc. NIPS Workshop Deep Learn. Speech Recognit. Rel.
Appl., Dec. 2009, pp. 1–8.

[8] Y. Bengio, A. C. Courville, and P. Vincent, Unsupervised Feature
Learning and Deep Learning: A Review and New Perspectives. Ithaca,
NY, USA: Cornell Univ. Press, Jun. 2012.

[9] H. Larochelle, D. Erhan, A. C. Courville, J. Bergstra, and Y. Bengio,
“An empirical evaluation of deep architectures on problems with many
factors of variation,” in Proc. 24th ICML, 2007, pp. 473–480.

[10] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng,
“Multimodal deep learning,” in Proc. 28th ICML, Jun. 2011,
pp. 689–696.

[11] P. Hamel and D. Eck, “Learning features from music audio
with deep belief networks,” in Proc. 11th ISMIR, Aug. 2010,
pp. 339–344.

[12] J. Bergstra, F. Bastien, O. Breuleux, P. Lamblin, R. Pascanu, O. Delal-
leau, et al., “Theano: Deep learning on gpus with python,” in Proc. Big
Learning Workshop, NIPS, vol. 11. 2011, pp. 1–6.

[13] S. Young, I. Arel, T. P. Karnowski, and D. Rose, “A fast and
stable incremental clustering algorithm,” in Proc. 7th ITNG, 2010,
pp. 204–209.

[14] C. Twigg and P. Hasler, “Configurable analog signal processing,” Digit.
Signal Process., vol. 19, no. 6, pp. 904–922, 2009.

[15] R. Chawla, A. Bandyopadhyay, V. Srinivasan, and P. Hasler, “A
531 nw/mhz, 128×32 current-mode programmable analog vector-matrix
multiplier with over two decades of linearity,” in Proc. IEEE Custom
Integr. Circuits Conf., Oct. 2004, pp. 651–654.

[16] P. Hasler and J. Dugger, “An analog floating-gate node for supervised
learning,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 5,
pp. 834–845, May 2005.

[17] J. Holleman, A. Mishra, C. Diorio, and B. Otis, “A micro-power neural
spike detector and feature extractor in 0.13 μm CMOS,” in Proc. IEEE
CICC, Sep. 2008, pp. 333–336.

[18] R. Bhargava, H. Kargupta, and M. Powers, “Energy consumption in data
analysis for on-board and distributed applications,” in Proc. Int. Conf.
Mach. Learn. Workshop Mach. Learn. Technol. Autonom. Space Appl.,
vol. 3. 2003, pp. 1–6.

[19] T. Delbruck, “‘Bump’ circuits for computing similarity and dissimilarity
of analog voltages,” in Proc. IJCNN, vol. 1. Jul. 1991, pp. 475–479.

[20] P. Gray, P. Hurst, S. Lewis, and R. Meyer, Analysis and Design of Analog
Integrated Circuits. New York, NY, USA: Wiley, 2001.

[21] T. Hall, C. Twigg, J. Gray, P. Hasler, and D. Anderson, “Large-scale
field-programmable analog arrays for analog signal processing,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 11, pp. 2298–2307,
Nov. 2005.

[22] F. Adil and P. Hasler, “Offset removal from floating gate differential
amplifiers and mixers,” in Proc. 45th MWSCAS, vol. 1. Aug. 2002,
pp. 251–254.

[23] D. Hsu, M. Figueroa, and C. Diorio, “Competitive learning with floating-
gate circuits,” IEEE Trans. Neural Netw., vol. 13, no. 3, pp. 732–744,
May 2002.

[24] P. Hasler and J. Dugger, “An analog floating-gate node for supervised
learning,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 5,
pp. 834–845, May 2005.

[25] J. Holleman, S. Bridges, B. Otis, and C. Diorio, “A 3 μw CMOS
true random number generator with adaptive floating-gate offset can-
cellation,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1324–1336,
May 2008.

[26] D. Hsu, S. Bridges, M. Figueroa, and C. Diorio, “Adaptive quantization
and density estimation in silicon,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 15. 2003, pp. 1107–1114.

[27] M. Figueroa, S. Bridges, and C. Diorio, “On-chip compensation
of device-mismatch effects in analog VLSI neural networks,” in
Advances in Neural Information Processing Systems, vol. 17, L. Saul,
Y. Weiss, and L. Bottou, Eds. Cambridge, MA, USA: MIT Press, 2005,
pp. 441–448.

[28] Y. Tsividis and C. McAndrew, Operation and Modeling of the MOS
Transistor. London, U.K.: Oxford Univ. Press, 2011.

[29] S. Liu, J. Kramer, G. Indiveri, and T. Delbruck, Analog VLSI: Circuits
and Principles. Cambridge, MA, USA: MIT Press, 2002.

[30] M. Pelgrom, A. Duinmaijer, and A. Welbers, “Matching properties
of MOS transistors,” IEEE J. Solid-State Circuits, vol. 24, no. 5,
pp. 1433–1439, Oct. 1989.

[31] J. Holleman, “Micro-power integrated circuits for neural interfaces,”
Ph.D. dissertation, Dept. Electr. Eng., Univ. Washington, Seattle, WA,
USA, 2009.

[32] P. Hasler, C. Diorio, B. Minch, and C. Mead, “Single transistor learning
synapses,” in Advances in Neural Information Processing Systems,
vol. 7, G. Tesauro, D. Touretzky, and T. Leen, Eds. Cambridge, MA,
USA: MIT Press, 1995, pp. 817–824.

[33] Y. LeCun and C. Cortes. (2010). MNIST Handwritten Digit Database
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[34] P. Simard, D. Steinkraus, and J. C. Platt, “Best practices for convolu-
tional neural networks applied to visual document analysis,” in Proc.
7th Int. Conf. Document Anal. Recognit., Aug. 2003, pp. 958–963.

[35] M. Figueroa, S. Bridges, D. Hsu, and C. Diorio, “A 19.2 GOPS mixed-
signal filter with floating-gate adaptation,” IEEE J. Solid-State Circuits,
vol. 39, no. 7, pp. 1196–1201, Jul. 2004.

Steven Young (S’07) received the B.S. degree in
electrical engineering from the University of Ten-
nessee, Knoxville, TN, USA, in 2000, where he
is currently pursuing the Ph.D. degree with the
Machine Intelligence Laboratory.

His current research interests include scalable
machine learning with a focus on deep learning
algorithms and architectures.

Junjie Lu (S’12) received the B.Sc. degree in
electrical engineering from Shanghai Jiao Tong Uni-
versity, Shanghai, China, in 2007. He is currently
pursuing the Ph.D. degree in electrical engineering
from the University of Tennessee, Knoxville, TN,
USA.

He was a Research Engineer with Philips, Shang-
hai, China, from 2007 to 2010. His current research
interests include low-power, high-performance ana-
log and mixed-signal circuit design, and analog
signal processing.

Jeremy Holleman (S’02–M’10) received the bache-
lor’s degree in electrical engineering from the Geor-
gia Institute of Technology, Atlanta, GA, USA, in
1997, and the master’s and Ph.D. degrees in electri-
cal engineering from the University of Washington,
Seattle, WA, USA, in 2006 and 2009, respectively.

He was with Data I/O, Redmond, WA, and
National Semiconductor, Federal Way, WA. He is
currently an Assistant Professor with the Department
of Electrical Engineering and Computer Science,
University of Tennessee, Knoxville, TN, USA. His

current research interests include low-power integrated circuits for biomedical
devices and other wireless sensing applications.

946 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 5, MAY 2014

Itamar Arel (S’92–M’03–SM’06) received the B.S.,
M.S., Ph.D., and M.B.A. degrees in electrical and
computer engineering from Ben-Gurion University,
Beer-Sheva, Israel, in 1995, 1998, and 2003, respec-
tively,.

He is currently an Associate Professor with the
Department of Electrical Engineering and Computer
Science, University of Tennessee, Knoxville, TN,
USA, where he directs the Machine Intelligence
Laboratory. From 2000 to 2003, he was with Ter-
aCross, Inc., Campbell, CA, USA, where he was

a Chief Scientist developing terabit/s switch fabric integrated circuits. His
current research interests include large-scale deep machine learning and
technologies for decision making under uncertainty.

Dr. Arel is a recipient of the U.S. Department of Energy Early CAREER
Award.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

