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Direct processing of raw high-dimensional data such as images and video by
machine learning systems is impractical both due to prohibitive power 
consumption and the “curse of dimensionality,” which makes learning tasks
exponentially more difficult as dimension increases. Deep machine learning
(DML) mimics the hierarchical presentation of information in the human brain to
achieve robust automated feature extraction, reducing the dimension of such
data. However, the computational complexity of DML systems limits large-scale
implementations in standard digital computers. Custom analog or mixed-mode
signal processors have been reported to yield much higher energy efficiency
than DSP [1-4], presenting the means of overcoming these limitations. However,
the use of volatile digital memory in [1-3] precludes their use in intermittently-
powered devices, and the required interfacing and internal A/D/A conversions
add power and area overhead. Nonvolatile storage is employed in [4], but the
lack of learning capability requires task-specific programming before operation,
and precludes online adaptation.

The feasibility of analog clustering, a key component of DML, has been demon-
strated in [5]. In this paper, we present an analog DML engine (ADE) 
implementing DeSTIN [6], a state-of-art DML framework, and featuring online
unsupervised trainability. Floating-gate nonvolatile memory facilitates operation
with intermittent harvested energy. An energy efficiency of 1TOPS/W is achieved
through massive parallelism, deep weak-inversion biasing, current-mode analog
arithmetic, distributed memory, and power gating applied to per-operation 
partitions. Additionally, algorithm-level feedback desensitizes the system to
errors such as offset and noise, allowing reduced device sizes and bias currents.

Figure 30.10.1 shows the architecture of the ADE, in which seven identical 
cortical circuits (nodes) form a 4-2-1 hierarchy. Each node captures regularities
in its inputs through an unsupervised learning process. The lowest layer receives
raw data (e.g. the pixels of an image), and continuously constructs belief states
that characterize the sequence observed. The inputs of nodes on 2nd and 3rd

layers are the belief states of nodes at their respective lower layers. The beliefs
of the top layer are then used as rich features for a classifier.

The node (Fig. 30.10.2) incorporates an 8×4 array of reconfigurable analog 
computation cells (RAC), grouped into 4 centroids, each with 8-dimensional
input. The centroids are characterized by their mean μ and variance σ 2 in each
dimension, stored in their respective floating gate memories (FGM). In a training
cycle, the analog arithmetic elements (AAE) calculate a simplified Mahalanobis
distance (assuming a diagonal covariance matrix) DMAH between the input 
observation o and each centroid. The 8-D distances are built by joining the 
output currents. A distance processing unit (DPU) performs inverse-
normalization (IN) operation to the 4 distances to construct the belief states,
which are the likelihood that the input belongs to each centroid. Then the 
centroid parameters μ and σ 2 are adapted using the online clustering algorithm.
The centroid with the smallest Euclidean distance DEUC to the input is selected
(classification). The errors between the selected centroids and input are loaded
to the training control (TC) and their memories are then updated proportionally.
In recognition mode, only the belief states are constructed and the memories are
not adapted. Intra-cycle power gating is applied to reduce the power 
consumption by up to 37%.

Figure 30.10.3 shows the schematic of the RAC, which performs three different
operations through reconfigurable current routing. Two embedded FGMs 
provide nonvolatile storage for centroid parameters. Capacitive feedback 
stabilizes the floating gate voltage (VFG) to yield pulse-width controlled update.
Tunneling is enabled by lowering its supply to bring down the VFG, increasing the
voltage across the tunneling junction. Injection is enabled by raising the source
of the injection transistor. This allows random-accessible bidirectional updates
without the need for on-chip high-voltage switches or charge pump. A 2-T V-I
converter then provides a current output and sigmoid update rule. The FGM 
consumes 0.5nA of bias current, and shows an 8b programming accuracy and
a 46dB SNR at full scale. The absolute value circuit (ABS) in the AAE rectifies the
bidirectional difference current between o and μ. Class-B operation and the 
virtual ground provided by amplifier A allow high-speed resolution of small 

current differences. The rectified currents are then fed into a translinear X2/Y 
circuit, which simulations indicate operates with more than an order of 
magnitude higher energy efficiency than its digital equivalence.

In the belief construction phase, the DPU (Fig. 30.10.4) inverts the distance 
outputs from the 4 centroids to calculate similarities, and normalizes them to
yield a valid probability distribution. The output belief states are sampled then
held for the rest of the cycle to allow parallel operation of all layers. The sampling
switch reduces current sampling error due to charge injection: a diode-
connected PMOS provides a reduced VGS to the switch NMOS to turn it on with
minimal channel charge. The S/H achieved less than 0.7mV of charge injection
error (2% current error), and less than 14μV of droop with parasitic capacitors
as holding capacitor. In classification phase, the IN circuits are reused together
with the winner-take-all network (WTA) to classify the observation to the nearest
centroid. A starvation trace (ST) circuit is implemented to address unfavorable
initial conditions wherein some centroids are starved of nearby inputs and never
updated. The ST provides starved centroids with a small but increasing 
additional current to force their occasional selection and pull them into more
populated areas of the input space. The lower right of Fig. 30.10.4 shows the TC
circuit, which performs current-to-pulse-width conversion using a VDD-
referenced comparison. Proportional updates cause the mean and variance
memories to converge to the sample statistics, respectively.

The ADE is evaluated on a custom test board with data acquisition hardware 
connecting to a host PC. The waveforms in Fig. 30.10.5 show the measured
beliefs, one from each layer. The sampling of beliefs proceeds from the top layer
to the bottom to avoid delays due to output settling. The performance of the
node is demonstrated by solving a clustering problem. The input data consists
of 4 underlying clusters, each drawn from a Gaussian distribution with different
mean and variance. The node achieves accurate extraction of the cluster 
parameters (μ and σ 2), and the ST ensures a robust operation against 
unfavorable initial conditions.

We demonstrate feature extraction for pattern recognition with the setup shown
in Fig. 30.10.6. The input patterns are 16×16 symbol bitmaps corrupted by 
random pixel errors. An 8×4 moving window defines the pixels applied to the
ADE’s 32-D input. First the ADE is trained unsupervised with examples of 
patterns. After the training converges, the 4 belief states from the top layer are
used as rich features and classified with a neural network implemented in 
software, achieving a dimension reduction from 32 to 4. Recognition accuracies
of 100% with corruption lower than 10%, and 95.4% with 20% corruption are
obtained, comparable to a software baseline, demonstrating robustness to the
non-idealities of analog computation. 

The ADE was fabricated in a 0.13μm CMOS process with thick-oxide IO FETs.
The die micrograph is shown in Fig. 30.10.7, together with a performance 
summary and a comparison with state-of-art bio-inspired parallel processors
utilizing analog computation. We achieve 1TOPS/W peak energy efficiency in
recognition mode. Compared to state-of-art, this work achieves very high energy
efficiency in both modes. This combined with the advantages of nonvolatile
memory and unsupervised online trainability makes it a general-purpose feature
extraction engine ideal for autonomous sensory applications or as a building
block for large-scale learning systems.
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Figure 30.10.1: The analog deep learning engine (ADE) architecture.
Figure 30.10.2: The node architecture and its timing diagram showing power
gating.

Figure 30.10.3: The reconfigurable current routing of the RAC, the schematics
of the FGM and AAE and measurement results.

Figure 30.10.5: Measured output waveforms, clustering and ST test results.
For clustering, 2-D results are shown for better visualization.

Figure 30.10.6: Pattern recognition test setup and results, demonstrating
accuracy comparable to baseline software simulation.

Figure 30.10.4: The schematic of the DPU and its sub-blocks. The training
control is shown on the lower right.
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Figure 30.10.7: Die micrograph, performance summary and comparison table.
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