

International Academy for Production Engineering

67th General Assembly - Lugano - Switzerland - Aug. 20-26 2017

The Application of Computational Fluid Dynamics to Vibratory Finishing Processes

<u>B. Mullany</u>, H. Shahinian, J. Navare, F. Azimi, E. Fleischhauer, P. Tkacik, R. Keanini

Mechanical Engineering and Engineering Science UNC Charlotte, North Carolina, USA Email: bamullan@uncc.edu

CIRP Annals - Manufacturing Technology Volume 66, Issue 1, 2017

CIRP office: 9 rue Mayran, 75009 PARIS – France, E mail: cirp@cirp.net, http://www.cirp.net

Vibratory Finishing

Process Dynamics:

- Vibrations ~29 Hz
- Amplitude 2 mm to 6 mm

Media:

- Plastic
- Ceramic
- Metal
- Organic

Applications

- Deburring
- Cleaning
- Improve surface finish

Finding application for:

- Orthopedic implants
- Blisks and turbine blades
- Tool finishing

Vibratory finishing: modeling

Dynamics Based approaches

• Hashimoto el al. (2015)

Discrete Element Modeling approaches

- Naeini et al. (2011)
- Uhlmann et al. (2015)
- Kang et al. (2017)

Continuum based approaches

- Cariapa et al. (2009)
- Wan et al (2012)

Naeini et al. (2011)

Wan et al (2012)

Particle Image Velocimetry (PIV)

UNC CHARLOTTE Halogen Light: ARRI EB 400/575 D

High Speed Camera: Redlake (Motionxtra HG-XR) Capture rate: 500 fps

Raytech AV-75 System (Ø 600 mm)

Motor speed: 1740 rpm Media: Ceramic RSG 10/10 Compound: FC FLK (3% vol.)

Particle Image Velocimetry (PIV)

Halogen Light: ARRI EB 400/575 D

High Speed Camera:

Redlake (Motionxtra HG-XR)

Capture rate: 500 fps

Each velocity vector is the time averaged velocity of 5059 vectors (10.12 s) for a 20.25 mm² area.

Compound: FC FLK (3% vol.)

60 mm

PIV: The Discrete and Continuous

Continuum nature of media captured

Each velocity vector = averaged velocity

Based on 5059 vectors (taken over 10.12s)

Over an 20.25 mm² area.

us Work

evior

PIV: The Discrete and Continuous

Continuum nature of media captured

Each velocity vector = averaged velocity

Based on 5059 vectors (taken over 10.12s)

Over an 20.25 mm² area.

Discrete nature of media particles

RSG 10/10

The physics support Media ≈ Fluid

<text><section-header><section-header><section-header><text><text><text><text><text>

The University of North Carolina at Charlotte, Department of Mechanical Engineering and Engineering Scie Charlotte, NC, 2022, USA. Correspondence and requests for materials should be addressed to R.S.K. (in released). **R.G. Keanini et al**. Macroscopic liquid-state molecular hydrodynamics, Scientific Reports 7, Article number: 41658, 2017.

Effective Viscosity of the Media

Determine Drag Coefficient, C_d

- Drag Force, F_d
- Velocity, V

 $C_{d} = F_{d} / (\frac{1}{2}\rho V^{2}A)$

Re=pVd/µ

Established empirical correlations (Ossen ...)

Ceramic µ ≈ 6 kg/ms Ceramic

 $\mu \approx 8 \text{ kg/ms}$

Plastic $\mu \approx 3.5$ kg/ms

PIV data used as CFD input

High Speed Images taken of vibratory bowl, 500fps for ~10s

206.4 mm

PIV measurement Averaged velocity field

CFD model predicted velocities

• PIV define inlet velocities

h1

Comparison between PIV and CFD

Main Source of error:

 2D representation of a complex 3D flow

Sensitivity Analysis:

- Density:
- Viscosity:
- # elements
- Soln. Initial.
- $1000 \text{ kg/m}^3 \rightarrow 2500 \text{ kg/m}^3$
- $0.1 \rightarrow 50 \text{ Pa.s}$
 - $900 \rightarrow 1.4 \times 10^{6}$ elements
 - Left, Top, Right

Media flow around a workpiece

Testing conditions:

Frequency:29.3 HzVibrational amp:~2mmProcess time:1.5 hrs

Workpiece:

100 mm

•

Ground AI 6061

50 mm

3mm thick

MRRs Surface Alteration

Flow tangential to workpiece

Flow normal to workpiece

Surface Location, m

Quantification of the Workpiece

.6 mm

Material Remova

Texture aspect ratio, Str

Str = 0 Anisotropic surface Str = 1 Isotropic surface

Tangential Flow – post processing

Normal flow - post processing

Comparing the results

Comparable velocities

High pressure Lower «

essure Low pressure Lower \leftarrow Velocity \rightarrow higher

Process vibrations should not be neglected!

Summary ...

- A 2D CFD model provides useful insights on 3D complex flow about a workpiece
 - CFD predicted velocities are comparable to PIV measured values
 - CFD provides new insights on local pressure field variations
- Combining knowledge of process vibrations with CFD predicted velocity and pressure fields offers explanations for process induced topographies.

Going forward...

- A fully successful model will combine;
 - Continuum mechanics
 - Process vibrations
 - Media packing density

Acknowledgements:

Partial funding via the Office of Naval Research (ONR N00014-15-1-0020) and NSFs IRD program

- Hashimoto, F., Johnson, S. P., 2015, Modeling of vibratory finishing machines, CIRP Annals Manufacturing Technology, 64:345-348.
- S.E. Naeini, J.K. Spelt, development of single cell bulk circulation in granular media in a vibrating bed, Powder technology, 211, pp. 176-186, 2011
- Eckart Uhlmann, Alexander Eulitz*, Arne Dethlefs, A., Discrete Element Modelling of Drag Finishing, Procedia CIRP, 31:369-374, 2015
- Young Sup Kang, Fukuo Hashimoto (1), Stephen P. Johnson, Jerry P. Rhodes, Discrete element modeling of 3D media motion in vibratory finishing process, CIRP Annals Manufacturing Technology, 66/1/2017
- V. Cariapa, H. Park, J. Kim, C. Cheng, A. Evaristo, Development of a metal removal model using spherical ceramic media in a centrifugal disk mass finishing machine, International Journal of Advanced Manufacturing Technology, 39, pp.92-106, 2008
- Wan, S., T. Sato, and A. Hartawan. Vibratory finishing of immobilized cylinders. in Advanced Materials Research. Trans Tech Publ. 2013